Physics of Galaxies Exercises: Set 5

1. Prove that velocity change Δv due to the mutual gravitational interaction of the stars is $\Delta v = 2Gm/(bv)$, where *m* is mass of the star that causes the orbit deflection. [Hint: you may assume that the distance between the stars on average is *b* and the range (length) of the gravitational interaction, as one star passes by the other, is roughly 2*b*]. [5 marks]

2. Show that tangent of the deflection angle of stars via their mutual gravitational interaction in a galaxy is given by $\tan \phi = 2Gmn^{1/3} / v^2$ where, *n* is number density of stars. [Hint: Estimate star's volume of "influence" to relate *n* and *b*.] [5 marks]

3. The sound speed, u, for a gas of density ρ and pressure p is also defined by

$$u^2 = \left[\frac{\partial p}{\partial \rho}\right]_{\text{adiabatic}}.$$

For a perfect gas behaving adiabatically, we have

 $p\rho^{-\gamma} = \text{constant}$,

where γ is the ratio of specific heats. Show that

 $u \propto \rho^{(\gamma-1)/2}$. [3 marks]

4. The free-fall time $\tau_{\rm ff}$ of an interstellar cloud of initial density ρ is given by

$$\tau_{\rm ff} \sim (G\rho)^{-1/2}$$

Estimate the free-fall time of a cloud with an initial number-density of 10^{10} hydrogen molecules per cubic metre. [3 marks]

5. When self-gravitation is taken into account, the dispersion relation for sound waves in a cloud of unperturbed density ρ is

$$\omega^2 = u^2 k^2 - 4\pi G\rho,$$

where ω is the angular frequency and k is the wave-number. Show that a perturbation with wave-number k given by

$$k < \left(\frac{4\pi G\rho}{u^2}\right)^{1/2}$$

is a standing wave, with an exponentially growing or decaying amplitude. [5 marks]

21 marks in total