
Stellar Structure and Evolution SPA7023 R.P. Nelson

Week 8

We have now derived all of the equations necessary for constructing a model of a star. In this lecture
we will consider in detail how a stellar model is actually constructed by computing a numerical solution
to the equations of stellar structure.

1 Numerical calculation of stellar models

One almost always considers the evolution of a star of a given mass. Hence it is convenient to rewrite
the equations of stellar structure with the mass m = m(r) as the independent variable. This may be
done by noting that for any quantity φ we can write

dφ

dm
=
dφ

dr

dr

dm
=

1

4πρr2

dφ

dr
. (1)

By transforming the equations of stellar structure that we have derived

dm

dr
= 4πr2ρ

dP

dr
= −Gm

r2
ρ

dL

dm
= ε

dT

dr
= − 3κρL(r)

16πacr2T 3
radiative energy transport

dT

dr
=

γ − 1

γ

P

T

dP

dr
convective energy transport (2)

we obtain

dr

dm
=

1

4πr2ρ

dP

dm
= − Gm

4πr4

dL

dm
= ε

dT

dm
= − 3κ

4acT 3

L

16π2r4
radiative energy transport

dT

dm
=

γ − 1

γ

T

P

dP

dm
convective energy transport. (3)

These equations must be supplemented by expressions for ρ, γ, κ and ε as functions of P and T , and
the chemical composition. As we have seen, these expressions are obtained from thermodynamics,
atomic physics and nuclear physics.

1.1 Boundary conditions at the centre

The differential equations (3) must be supplemented by suitable boundary conditions. At the stellar
centre, we have

r = 0 and L = 0 for m = 0. (4)

1.2 Boundary conditions at the surface

The surface boundary conditions involve specifying values of T and P at the surface of the model. We
can choose the point where T = Teff as the surface of the model. As we will see below, this location is
known as the photosphere, and is the region from which most of the radiation from the star propagates
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out into free space. Once we have specified the temperature boundary condition, we need to find the
appropriate value of the pressure at this temperature.

In the stellar atmosphere, the photons are radiated directly into space, without being substantially
absorbed, and hence the transport of energy does not require a large temperature gradient, so the energy
can be transported by radiation and will not be transported by convection. The optical properties of
the atmosphere are usually described in terms of the so-called optical depth, defined as

τ =

∫ ∞
r

κρdr. (5)

Since κρ = 1/λph, where λph is the mean free path of the photon (see lecture of week 6), a photon can
be radiated directly to space from layers which have an optical depth of about 1 (or smaller), since
this optical depth corresponds to a length scale dr ∼ λph.

Rewriting eqn. (2) for the diffusive flux of radiative energy, F , as

dT 4

dr
= −3F

ac
κρ =

3F

ac

dτ

dr
(6)

(note the sign change because τ decreases with r) we have

T 4 =
3F

ac
(τ + constant), (7)

since the thin atmosphere can be considered a plane parallel layer with dF/dr ≈ 0 (i.e through which
the radiative flux is approximately constant).

Of course, the eqns. (6) and (7) become invalid when one approaches the very optically thin layers
high in the atmosphere. Because of the deceasing density, the mean free path of the photons there will
become comparable to, and eventually larger than, the distance which is left for the photons to reach
free space. Hence the whole diffusion approximation breaks down, and one has to solve the far more
complicated full set of radiation transport equations in the stellar atmosphere.

We can employ eqn. (7) in the lower atmosphere, where the diffusion approximation become rele-
vant, but we need the value of the constant of integration which appears in this equation. The theory
of stellar atmospheres suggests the value of 2/3 as a simple approximation for this constant, and hence
we obtain

T 4 =
3F

ac

(
τ +

2

3

)
. (8)

We note that the Stefan-Boltzmann constant is given by

σ =
ac

4
, (9)

and the Stefan-Boltzmann law gives
F = σT 4

eff =
ac

4
T 4

eff . (10)

Hence, substituting for the flux from eqn. (10) into eqn. (8) gives

T 4 =
3

4
T 4

eff

(
τ +

2

3

)
, (11)

which shows that T = Teff when τ = 2/3. This level in the atmosphere is known as the photosphere.
It is the level from which the bulk of the radiation is emitted into space, and we can adopt it as the
location of the outer boundary for our stellar models.

To evaluate the photospheric value of pressure, and hence the pressure at our outer boundary
condition, we define a mean opacity 〈κ〉, averaged over the stellar atmosphere above the photospheric
radius, Rph, through the relation

τph =
2

3
= 〈κ〉

∫ ∞
Rph

ρdr. (12)
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We now approximate the gravitational acceleration in the atmosphere by a constant value GM/R2
ph,

and obtain
Pph =

∫ ∞
Rph

GM

R2
ph

ρdr =
2

3〈κ〉
GM

R2
ph

. (13)

Together with L = 4πR2σT 4, this is the required surface boundary condition, applied at T = Teff .
More accurate surface boundary conditions, which are implemented in modern numerical computations,
can be formulated by fitting the stellar model solution outlined above onto the solution for a stellar
atmosphere.

As an example of stellar models that have been computed, Fig. 1.2 shows the location of the main

Figure 1: H-R diagram of the zero-
age main sequence for composition X =
0.685 and Y = 0.294. The loca-
tion of several models with masses be-
tween 0.1 and 22 solar masses are in-
dicated (from Kippenhahn & Weigert
1990, Stellar Structure & Evolution,
Springer-Verlag).

sequence stars of uniform chemical composition (the so-called zero-age main sequence) on a theoretical
H-R diagram.

1.3 Midpoint fitting method

We now consider in some detail the practical problem of actually calculating a stellar model numerically.
In week 4 we considered how to construct numerical solutions to the Lane-Emden equation that governs
the structure of polytropic stellar models, and we adopt a similar procedure here. Our approach will
deviate from that presented in week 4 because the four equations of stellar structure are supplemented
by boundary conditions at both the centre and the surface of the star, and this complicates the process
of obtaining a numerical solution. When solving the Lane-Emden equation we had two boundary
conditions defined at the centre of the star, and this allowed us to develop approximate expressions
for the Lane-Emden equation that could be solved numerically by stepping out from the centre of
the star, using the boundary conditions as initial conditions for our integration, until we reached the
surface of the model. When solving the equations of stellar structure, because we need to satisfy
boundary conditions at the centre and the surface, we will integrate outwards from the centre of the
star, and inwards from the surface, and try to match the solutions at the half-way point. In general,
the outward and inward integrations will not meet in the middle, and the matching procedure requires
repeated integrations to be undertaken with adjustment of a subset of the boundary conditions until
the solutions match at the mid-point to a specified level of accuracy.

1.3.1 Difference equations

We will now develop approximations to the stellar structure equations (3) that allow us to integrate
outwards from the centre of a stellar model and inwards from the surface. Consider a star of mass M∗
that is discretised into N integration points and N − 1 mass shells. The innermost integration point
is located at the stellar centre, where the mass and radius are defined to be zero (m = r = 0) and the
outermost one is located at the stellar surface where the mass is equal to the stellar mass M∗. Hence
we can write

M∗ =

N−1∑
i=1

∆mi (14)
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where we use the index i to reference the integration points and the mass shells, and the mass contained
in each mass shell is denoted ∆mi. Note that i = 0 represents the innermost integration point located
at the centre where the mass mi=0 = 0. For a general integration point i, the interior mass can be
written

mi =
i∑

j=1

∆mj . (15)

From now on we will assume that the mass shells all have the same mass, ∆m. We can approximate
the derivatives of quantities such as the pressure, P , using finite difference approximations

dP

dm
≈ ∆P

∆m
=

Pi+1 − Pi
mi+1 −mi

, (16)

where Pi, Pi+1, mi and mi+1 are the pressures and interior masses defined at the arbitrary integration
points i and i + 1. Using the notation ∆m = mi+1 − mi, the equations of stellar structure can be
approximated as

ri+1 − ri
∆m

=
1

4πr2
i ρi

Pi+1 − Pi
∆m

= −Gmi

4πr4
i

Li+1 − Li
∆m

= εi

Ti+1 − Ti
∆m

= − 3κi
4acT 3

i

Li
16π2r4

i

radiative energy transport

Ti+1 − Ti
∆m

=
γ − 1

γ

Ti
Pi

Pi+1 − Pi
∆m

convective energy transport (17)

and hence we obtain equations that allow us to integrate out from the centre of the star

ri+1 = ri + ∆m× 1

4πr2
i ρi

Pi+1 = Pi −∆m× Gmi

4πr4
i

Li+1 = Li + ∆m× εi

Ti+1 = Ti −∆m× 3κi
4acT 3

i

Li
16π2r4

i

radiative energy transport

Ti+1 = Ti + ∆m× γ − 1

γ

Ti
Pi

Pi+1 − Pi
∆m

convective energy transport. (18)

Equations (18) are supplemented by the boundary conditions ri = 0 and Li = 0 for the innermost
integration point i = 0 (but see below for a more detailed discussion about boundary conditions).
To start the integration, it is also clear from inspection of eqns. (18) that we need to specify values
for Ti=0 = Tc and Pi=0 = Pc. As we will see below, the mid-point fitting algorithm will consist of
integrating outwards from the centre repeatedly, adjusting the values of Tc and Pc, until the solutions
obtained from the outwards and inwards integrations agree with one another at the mid-point.

We now consider the equations to be used to integrate inwards from the surface. We can write

Page 4 of 8



Stellar Structure and Evolution SPA7023 R.P. Nelson

approximations to the stellar structure eqns. (18) in the form

ri − ri−1

∆m
=

1

4πr2
i ρi

Pi − Pi−1

∆m
= −Gmi

4πr4
i

Li − Li−1

∆m
= εi

Ti − Ti−1

∆m
= − 3κi

4acT 3
i

Li
16π2r4

i

radiative energy transport

Ti − Ti−1

∆m
=

γ − 1

γ

Ti
Pi

Pi − Pi−1

∆m
convective energy transport (19)

and hence we obtain equations that allow us to integrate out from the surface of the star

ri−1 = ri −∆m× 1

4πr2
i ρi

Pi−1 = Pi + ∆m× Gmi

4πr4
i

Li−1 = Li −∆m× εi

Ti−1 = Ti + ∆m× 3κi
4acT 3

i

Li
16π2r4

i

radiative energy transport

Ti−1 = Ti −∆m× γ − 1

γ

Ti
Pi

Pi − Pi−1

∆m
convective energy transport. (20)

Equations (20) are supplemented by the boundary conditions TN−1 = Ts and PN−1 = Ps, where Ts

and Ps are the temperature and pressure at the surface of the model. As can be seen from inspection
of eqns. (20), we also require boundary conditions to be specified for rN−1 = Rs and LN−1 = Ls,
the surface values for the radius and luminosity, in order to be able to start the inwards integration
from the surface. As will be discussed below, a key element of the mid-point fitting procedure will
be to integrate inwards repeatedly from the surface, adjusting the values of Rs and Ls, while keeping
Ts and Ps fixed, until the solutions obtained from the inwards and outwards integrations meet at the
midpoint.

Note also that we have expressions for εi and κi in terms of the density ρi and temperature Ti. We
obtain the density from the equation of state

ρi =
µmHPi
kBTi

(21)

and then use Kramers opacity
κi = κ0ρiT

−7/2
I (22)

and the energy generation rate
εi = εppρiT

α
i + εCNOρiT

β
i (23)

where κ0, εpp and εCNO are constants that define the magnitudes of the Kramers opacity and energy
generation rate per unit mass from the PP-chain and CNO-cycle, respectively.

1.3.2 A closer look at the boundary conditions

It is obvious from inspection of eqns. (17) and (18) that these equations cannot be applied to a situation
where the integration is initiated at the very centre of a star where m = r = 0, since we have factors
of ri in the denominator. Hence, in practice we must start the integration at some small distance
from the centre such that ri=0 > 0 and mi=0 > 0. Formally, this then requires a change in the
boundary conditions because the values at the centre of the star do not apply at the location of the
first integration point. Using the stellar structure eqns. (3), we can obtain approximate values to be
specified at the first integration point.
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From the equation of mass conservation we have

dr =
dm

4πr2ρ
. (24)

Assuming that very close to the centre that ρ = ρc, and applying the boundary condition r = 0 at
m = 0, we have ∫ r

0
r2dr ≈

∫ m

0

1

4πρc
dm =⇒ r3

3
=

m

3πρc
. (25)

Hence, if our first integration point is placed at a small distance from the centre of the stellar model,
then the radius and mass at that point are related by

ri=0 =

(
3mi=0

4πρc

)1/3

. (26)

Similarly, if the gradient in energy sources is not too large, then close to the centre of the star we can
write ∫ L

0
dL ≈ ε

∫ m

0
dm =⇒ L = ε(ρc, Tc)m. (27)

Applying this to our numerical scheme gives a boundary condition for L at the innermost integration
point

Li=0 = ε(ρc, Tc)mi=0. (28)

We assume that the star is in hydrostatic equilibrium, and that the density near the centre can be
approximated ρ = ρc. This gives

r ≈
(

3m

4πρc

)1/3

(29)

and
dP

dm
= − Gm

4πr4
=⇒

∫ P

Pc

dP ≈
∫ m

0
−Gm

4π

(
4πρc

3m

)4/3

dm. (30)

Integrating we obtain

P − Pc = −3G

8π

(
4πρc

3

)4/3

m2/3. (31)

Hence, the pressure boundary condition at our innermost integration point becomes

Pi=0 = Pc −
3G

8π

(
4πρc

3

)4/3

m
2/3
i=0. (32)

In the case of radiative energy transport we have

dT

dm
= − 3κL

64π2acr4T 3
≈ − 3κεcm

64π2acT 3

(
4πρc

3m

)4/3

. (33)

Integrating yields ∫ T

Tc

T 3dT = − κcεc
16πac

(
4πρ4

c

3

)1/3 ∫ m

0
m−1/3dm (34)

which evaluates to

T 4 − T 4
c = −κcεc

2ac

(
3ρ2

c

4π

)2/3

m2/3. (35)

Hence the temperature boundary condition at the innermost integration point becomes

T 4
i=0 = T 4

c −
κcεc
2ac

(
3ρ2

c

4π

)2/3

m
2/3
i=0, (36)

where κc and εc indicate that the opacity and energy generation rates are calculated using the central
values ρc and Tc. Similarly a temperature boundary condition can be obtained using the adiabatic
temperature gradient if the central regions are expected to be fully convective, as may occur in high
mass stars. Obtaining this is left as an exercise.
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1.3.3 Iterating the solutions to convergence

Consider the situation where we have developed a computer code to solve the equations of stellar
structure based on eqns. (18) and (20), we have applied the boundary conditions at the inner and
outer integration points, and we have run the code so that it integrates the solution from the centre to
the integration point that lies at the midpoint, and it integrates the solution from the surface to the
same midpoint. Unless we have been exceptionally fortunate, the guesses that we have made for the
boundary condition values of Tc, Pc, Rs and Ls will lead to solutions that do not meet at the midpoint.
In other words, the values of P , T , r and L at the midpoint obtained for the outward integration will
not be equal to those obtained from the inward integration. A stellar model can only be said to have
been successfully computed when all of these values agree (at least to within some specified tolerance).
A satisfactory solution can be obtained by repeatedly adjusting the values of Tc, Pc, Rs and Ls and
running the integrations until they meet in the middle. The question is, what is the best strategy for
doing this? Guess work? Never a good idea! Choosing all possible reasonable values of Tc, Pc, Rs and
Ls and repeating the calculations until the best set of choices is hit upon? That will in general be too
expensive in terms of computing time given that the range of possible values is enormous. Fortunately,
there is a more sophisticated and computationally efficient approach available to us.

First, let us remind ourselves that the outwards and inwards integrations will yield values for r,
P , T and L throughout the star. Let us define the difference between the values of r at the midpoint
obtained from the outwards and inwards integrations as rdiff = routwards − rinwards. Let us also define
the differences in the values of P , T and L in the same way:

Pdiff = Poutwards − Pinwards

Tdiff = Toutwards − Tinwards

Ldiff = Loutwards − Linwards. (37)

Now suppose we change the central pressure in the computer code, so that Pc → Pc + δPc, where
δPc is some small positive change in Pc, and we rerun the calculation, keeping all the other boundary
conditions equal to their original values. This will change the solution produced by the outwards
integration, and we will obtain new values of rdiff , Pdiff , Tdiff and Ldiff . Let us use the notation
(δrdiff)P to denote the change in rdiff that arises when we change the value of Pc by an amount δPc.
We also denote the change in Pdiff that arises by (δPdiff)P, and similarly for the changes in Tdiff and
Ldiff we define (δTdiff)P and (δLdiff)P. Note that the values of (δrdiff)P etc correspond to subtracting
the new value of rdiff from the old value. This point is important as it defines the signs of (δrdiff)P etc.

Now let us also run the code with a small change in the value of Tc → Tc + δTc, with the other
boundary conditions having their original values. This will give rise to changes in rdiff , Pdiff , Tdiff

and Ldiff . We will denote these changes as (δrdiff)T, (δPdiff)T, (δTdiff)T and (δLdiff)T. Repeating this
procedure with small changes to Rs and Ls will give rise to changes in rdiff , Pdiff , Tdiff and Ldiff that
we will denote as (δrdiff)R, (δPdiff)R, (δTdiff)R, (δLdiff)R and (δrdiff)L, (δPdiff)L, (δTdiff)L, (δLdiff)L.

Now, it is clear that for small changes to the boundary condition values denoted by δPc, δTc, δRs

and δLs, we can write

(δrdiff)P

δPc
≈ ∂rdiff

∂Pc
,

(δPdiff)P

δPc
≈ ∂Pdiff

∂Pc
,

(δTdiff)P

δPc
≈ ∂Tdiff

∂Pc
,

(δLdiff)P

δPc
≈ ∂Ldiff

∂Pc

(δrdiff)T

δTc
≈ ∂rdiff

∂Tc
,

(δPdiff)T

δTc
≈ ∂Pdiff

∂Tc
,

(δTdiff)T

δTc
≈ ∂Tdiff

∂Tc
,

(δLdiff)T

δTc
≈ ∂Ldiff

∂Tc

(δrdiff)R

δRs
≈ ∂rdiff

∂Rs
,

(δPdiff)R

δRs
≈ ∂Pdiff

∂Rs
,

(δTdiff)R

δRs
≈ ∂Tdiff

∂Rs
,

(δLdiff)R

δRs
≈ ∂Ldiff

∂Rs

(δrdiff)L

δLs
≈ ∂rdiff

∂Ls
,

(δPdiff)L

δLs
≈ ∂Pdiff

∂Ls
,

(δTdiff)L

δLs
≈ ∂Tdiff

∂Ls
,

(δLdiff)L

δLs
≈ ∂Ldiff

∂Ls

(38)

Hence, we can use the expressions in eqn. (38) to obtain expressions for how large a change in rdiff ,
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Pdiff , Tdiff and Ldiff will result from imposed changes to the boundary condition values(
∂rdiff

∂Pc

)
∆Pc +

(
∂rdiff

∂Tc

)
∆Tc +

(
∂rdiff

∂Rs

)
∆Rs +

(
∂rdiff

∂Ls

)
∆Ls = ∆rdiff(

∂Pdiff

∂Pc

)
∆Pc +

(
∂Pdiff

∂Tc

)
∆Tc +

(
∂Pdiff

∂Rs

)
∆Rs +

(
∂Pdiff

∂Ls

)
∆Ls = ∆Pdiff(

∂Tdiff

∂Pc

)
∆Pc +

(
∂Tdiff

∂Tc

)
∆Tc +

(
∂Tdiff

∂Rs

)
∆Rs +

(
∂Tdiff

∂Ls

)
∆Ls = ∆Tdiff(

∂Ldiff

∂Pc

)
∆Pc +

(
∂Ldiff

∂Tc

)
∆Tc +

(
∂Ldiff

∂Rs

)
∆Rs +

(
∂Ldiff

∂Ls

)
∆Ls = ∆Ldiff

(39)

where ∆Pc, ∆Tc, ∆Rs, ∆Ls represent the changes in the boundary condition values. The set of
simultaneous equations in (39) can be expressed in matrix form

(
∂rdiff
∂Pc

) (
∂rdiff
∂Tc

) (
∂rdiff
∂Rs

) (
∂rdiff
∂Ls

)(
∂Pdiff
∂Pc

) (
∂Pdiff
∂Tc

) (
∂Pdiff
∂Rs

) (
∂Pdiff
∂Ls

)(
∂Tdiff
∂Pc

) (
∂Tdiff
∂Tc

) (
∂Tdiff
∂Rs

) (
∂Tdiff
∂Ls

)(
∂Ldiff
∂Pc

) (
∂Ldiff
∂Tc

) (
∂Ldiff
∂Rs

) (
∂Ldiff
∂Ls

)




∆Pc

∆Tc

∆Rs

∆Ls

 =


∆rdiff

∆Pdiff

∆Tdiff

∆Ldiff

 (40)

What we really want are the values of ∆Pc, ∆Tc, ∆Rs and ∆Ls that are required to give the de-
sired/specified changes in ∆rdiff , ∆Pdiff , ∆Tdiff and ∆Ldiff , so that the solutions from the outwards
and inwards integrations will agree at the midpoint. Writing the above matrix equation as

A · x = y (41)

we obtain the elements of x by inverting the matrix A:

x = A−1 · y. (42)

Once we have the estimated values for ∆Pc, ∆Tc, ∆Rs and ∆Ls, we update the boundary conditions
Pc → Pc − ∆Pc, Tc → Tc − ∆Tc, Rs → Rs − ∆Rs, Ls → Ls − ∆Ls and compute the new solutions
by integrating outwards and inwards to the midpoint. This procedure is repeated until convergence is
achieved. Note the signs of the changes made to the boundary condition values above.

See the stellar structure code that is provided on the QMPlus page for this module to see how the
above procedure is implemented in practice.
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