
Stellar Structure and Evolution SPA7023 R.P. Nelson

Week 7

1 Energy transport by convection

It is possible to calculate stellar models assuming that energy transport occurs through radiation alone.
Such models, however, do not provide a realistic description of real stars because they are unstable.

Any theoretical model should be tested for possible instabilities, before it can be accepted as
realistic. An instability normally manifests itself through the growth of small (formally infinitesimal)
disturbances, with the growth through time occurring exponentially. If the characteristic growth time
is less than the evolutionary time scale for the star, the disturbance may then end up significantly
modifying the properties of the star. A particular type of instability is often found to operate, namely
the instability corresponding to having a layer of higher density sitting on top of a layer of lower
density. An extreme analogy to this instability would be a glass where a layer of mercury has been
placed on top of a layer of water. This is clearly an unstable situation. Instabilities of this type are
usually referred to as Rayleigh-Taylor instabilities.

In a star, this type of instability can occur if the temperature decreases too rapidly with distance
from the centre. The decrease of pressure with r is determined by hydrostatic equilibrium, and is
therefore largely given, and the only possibility for compensating for a rapid decrease in temperature
is, according to the ideal gas law, that the density decreases slowly or even increases; this leads to the
instability. From the equation of radiative transfer

dT

dr
= − 3κρL(r)

16πacr2T 3
(1)

it follows that the temperature decreases rapidly with increasing r when the opacity is high or the lu-
minosity is high (note that L(r), the luminosity passing through radius r, corresponds to the integrated
energy generated interior to the radius r).

As a result of the instability, hotter, relatively lighter fluid elements rise up through the star and
cooler, relatively heavier fluid elements sink down. When the motion becomes sufficiently strong, the
fluid elements are dissolved into the surrounding gas, which is then mixed. As a result, the rising
elements of gas deposit their excess heat in the surroundings, and this leads to a net transport of
energy out through the star. This process is known as convection, and the instability is called the
convective instability. Convection is well known from everyday life, for example when air rises over a
heater. Besides contributing to the energy transport, convection also leads to mixing of the parts of
the star where it occurs, which has a substantial effect on the evolution of some stars.

1.1 The buoyancy force

Consider the equation of motion for an individual fluid element located at some arbitrary radius r in
a star:

ρ(r)
dv

dt
= −dP

dr
− Gm(r)

r2
ρ(r), (2)

where the terms on the right hand side of the above equation represent the forces due to the pressure
gradient and gravity, respectively. First, we consider the situation where the density of the fluid element
is ρ1, and we assume that no net force acts on the fluid element, so that

dP

dr
= −Gm(r)

r2
ρ1. (3)

Now we consider the situation where the pressure gradient in the star is unchanged, but the density
inside the fluid element is modified so that it has value ρ2. It is clear from the above equation that
force balance can no longer to maintained, and the force per unit volume acting on the fluid element
reads

ρ2
dv

dt
= −dP

dr
− Gm(r)

r2
ρ2. (4)
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Substituting for the pressure gradient term using equation (3) gives the expression

ρ2
dv

dt
= −(ρ2 − ρ1)

Gm(r)

r2
= −(ρ2 − ρ1)g(r), (5)

where g(r) is the gravitational acceleration at radius r due to the interior mass. Hence, we see that if
ρ2 < ρ1, corresponding to the fluid element having its density lowered while maintaining local pressure
balance, then the fluid element will be buoyant and will experience an outwards directed acceleration.

1.2 The convective instability condition

Figure 1: The motion of a convective element, from an
initial position 1 to a later position 2.

To determine the condition for instability, we con-
sider an element of gas (see Fig. 1) that is moved
a distance ∆r outwards. As indicated in Fig. 1,
we denote the pressure and density in the sur-
roundings outside the element before and after
the motion by (P1, ρ1) and (P2, ρ2). The pres-
sure and density inside the element before and
after the motion are denoted by (Pe1, ρe1) and
(Pe2, ρe2), respectively. When at position 1, the
fluid element is assumed to have the same density and pressure as the surrounding fluid, so that
ρe1 = ρ1 and Pe1 = P1. The motion of the element of gas after it has been moved a distance ∆r to
a point 2 is determined by the buoyancy force which, as we saw in section 1.1 above, is given by the
expression

fbuoy = −g (ρe2 − ρ2) ≡ −g∆ρ, (6)

where g = −Gm(r)/r2 is the gravitational acceleration. Note that fbuoy is the buoyancy force per
unit volume at point 2 experienced by the perturbed element of gas, and we see that it depends on
the difference between the density inside the element after it has been displaced outwards and the
surrounding density at its new location. If fbuoy > 0, then moving the fluid element outwards by a
small distance causes it to be accelerated outwards, and hence the initial displacement is amplified
and the system is unstable. In the opposite case (fbuoy < 0), the force is directed downwards and
the element of gas returns to its original position and the system is stable (more accurately, in the
stable case the element of gas actually oscillates around its original equilibrium location after being
displaced).

To determine ∆ρ, and hence decide whether or not the star is convectively stable or unstable, we
assume that:

(i) the element of gas is always in pressure balance with the surroundings;

(ii) the motion is fast enough that there is no heat exchange between the element and its surroundings
during the displacement.

From assumption (i) we have Pe2 = P2. Assumption (ii) tells us that the motion takes place
adiabatically. If we assume adiabatic changes then the relation between density and pressure is given
by the adiabatic equation of state discussed in week 2:

P = Kργ . (7)

If we have an ideal gas then we can also show that

P = K2T
γ

γ−1 , (8)

where K2 is a constant. Differentiating eqn. (7), and combining the result with eqn. (7), leads to

dρe
ρe

=
1

γ

dPe

Pe
=

1

γ

dP

P
(9)
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where dρe and dPe represent the changes occurring to ρ and P inside the fluid element. From a Taylor
expansion we therefore obtain (noting that ρe1 = ρ1):

∆ρ = ρe2 − ρ2 = ρe2 − ρe1 − (ρ2 − ρ1)

≈ ρ1
1

γ

1

P1

dP

dr
∆r − dρ

dr
∆r

≈
(
ρ1
P1

1

γ

dP

dr
− dρ

dr

)
∆r =

[(
dρ

dr

)
ad

− dρ

dr

]
∆r, (10)

where we have introduced (
dρ

dr

)
ad

≡ 1

γ

ρ

P

dP

dr
, (11)

the density gradient resulting from adiabatic motion in the given pressure gradient. Here it is worth
noting that only changes occurring in the displaced fluid element are assumed to be adiabatic, and
the background density and pressure distributions within the star do not arise because of an adiabatic
equation of state.

The condition for instability is that ∆ρ < 0 (see eqn. 6), i.e.

1

ρ

dρ

dr
>

1

γ

1

P

dP

dr
≡ d ln ρ

d lnP
<

1

γ
. (12)

Note that the last inequality has changed from > to <. This is because the first inequality in eqn. (12)
compares two negative quantities, whereas the second inequality compares two positive quantities, so
the inequality symbol also needs to change. This can be seen more clearly if we write the following:

1

ρ

dρ

dr
>

1

γ

1

P

dP

dr
≡ d ln ρ

dr
>

1

γ

d lnP

dr
≡
∣∣∣∣d ln ρ

dr

∣∣∣∣ < 1

γ

∣∣∣∣d lnP

dr

∣∣∣∣ ≡ ∣∣∣∣ d ln ρ

d lnP

∣∣∣∣ < 1

γ
(13)

To summarise, we have considered the situation where an element of gas, sitting among an identical
set of other gas elements at an initial radial location in the star labelled as ‘1’, is perturbed upwards
by a small distance ∆r to a new location ‘2’. The initial properties inside the fluid element are ρe1
and Pe1, but it should be noted that these properties are the same as those in the surrounding fluid
elements at the initial location, ρ1 and P1. The fluid element moves upwards without exchanging heat
with its surroundings, while maintaining pressure equilibrium with those same surroundings. Hence
the motion is adiabatic, and the relation between changes in the pressure and density inside the fluid
element are determined by the adiabatic equation of state. The question of whether or not the fluid
element wants to continue rising upwards after being moved to location ‘2’ depend on ∆ρ = ρe2 − ρ2,
the difference between the density inside the fluid element and its surroundings, where we require
∆ρ < 0 for instability since the element needs to be less dense than its surroundings. This leads to the
instability condition eqn. (12).

The instability condition is normally written in terms of the temperature gradient, rather than
the gradient in density, because the temperature gradient is present in the basic equations of stellar
structure whereas the density gradient is not. We use the ideal gas law, written in the form

ρ =
µmHP

kBT
. (14)

It is normally assumed that the chemical composition is independent of position (not making this
assumption would lead to a criterion for convective instability called the Ledoux criterion that depends
on gradients in the mean molecular weight). Assuming that the gas is ionised everywhere and chemically
homogeneous, so that µ is constant, leads to the expression

1

ρ

dρ

dr
=

1

P

dP

dr
− 1

T

dT

dr
. (15)

This leads to (
dρ

dr

)
ad

− dρ

dr
=

1

γ

ρ

P

dP

dr
− ρ

P

dP

dr
+
ρ

T

dT

dr

= −γ − 1

γ

ρ

P

dP

dr
+
ρ

T

dT

dr
. (16)
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We note that we can obtain the following expression for the adiabatic temperature gradient from
equation (8) (

dT

dr

)
ad

=
γ − 1

γ

T

P

dP

dr
. (17)

Equation (16) can then be written(
dρ

dr

)
ad

− dρ

dr
=

[
dT

dr
−
(
dT

dr

)
ad

]
ρ

T
. (18)

Hence, the instability condition can be written(
dT

dr

)
ad

>
dT

dr
. (19)

In other words, convective instability occurs when the adiabatic temperature gradient falls off more
gently with radius than the background temperature gradient in the star. By analogy with eqn. (12),
eqn. (16) can be written as (exchanging the equality symbol with the appropriate inequality for the
instability):

d lnT

d lnP
>
γ − 1

γ
. (20)

Note that when obtaining eqn. (20) we have again reversed the inequality symbol because we have
manipulated the equations in a way that changes the signs on the left-hand and right-hand sides from
being negative to being positive, requiring that the inequality symbol also changes. This equation,
known as the Schwartzschild condition for convective instability, shows that instability occurs if the
temperature decreases too rapidly as we move outwards through the star, in perfect agreement with
our simple discussion. For a fully ionised gas, (γ − 1)/γ = 2/5.

1.3 Where does convection occur?

To determine the circumstances under which one may expect convection, we consider a model where
energy transport takes place through radiation and investigate its stability. The temperature gradient
in a radiative layer is given by

dT

dr
= − 3κρL(r)

16πacr2T 3
. (21)

Combining this with the equation for hydrostatic equilibrium and the ideal gas law we have

d lnT

d lnP
=

3kB
16πacGmH

κ

µ

L(r)

m(r)

ρ

T 3
. (22)

From the Schwarzschild condition eqn. (20) and eqn. (22) it is evident that one may expect convection
if

(i) L(r)/m(r) is large. This condition corresponds to the energy generation rate per unit mass inside
radius r being large. This is usually the case inside massive stars. The energy generation in such
stars is a rapidly increasing function of temperature, and hence is strongly concentrated towards
the centre of the star. Therefore, L/m is large and the star has a convective core.

(ii) κ is large. This is satisfied in the outer parts of relatively low mass stars on the main sequence, or
more generally in stars with low surface temperatures. Here the opacity is given by Kramers law
κ = κ0Z(X + 1)ρT−3.5, and hence for low temperatures we have high opacity. Opacity can also
increase in localised regions in radius where hydrogen is ionised, since the ionisation of hydrogen
provides a means by which photons can be absorbed by matter.

(iii) ρ/T 3 is large. This is also typically satisfied in the outer regions of relatively cool stars.

(iv) (γ − 1)/γ is small. i.e. The adiabatic temperature gradient is small. This is satisfied in the
ionisation zone of hydrogen. i.e. Again in the outer parts of cool stars.
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Thus, condition (i) predicts convection in the cores of massive stars, whereas the remaining conditions
indicate a tendency for convection in the outer layers of cool stars, in particular in the envelopes of
relatively cool, low mass stars on the main sequence, and in the envelopes of red giant stars. These
locations of convection are summarised in Fig. 2.

1.4 Temperature gradient in convection zones

Figure 2: The occurrence of convection zones
in main sequence stars. Massive stars have con-
vective cores. Lower mass stars have convective
envelopes whose depths increase as the mass de-
creases.

The motion of a convective element after the onset of
instability is extremely difficult to describe. As a re-
sult, there is no definitive method for calculating the
gas motion or the resulting rate of convective energy
transport. It is generally assumed that the velocity
of a convective element increases relative to the back-
ground gas to a point where new hydrodynamical in-
stabilities set in, leading to the generation of turbu-
lence that dissolves the element. In this way, the excess
heat of the element is deposited in the surroundings,
leading to energy transport. The description of such
a turbulent mixing process is, and has been for a long
time, the subject of on-going research. A full under-
standing has not been achieved so far, primarily because of shortcomings in numerical simulations of
the process arising from the need to simulate the gas flows with very high spatial resolution to capture
the breakdown of the convective gas flows into turbulence. We are still a long way from incorporating
a complete numerical description of convection into computations of stellar models.

Fortunately, a less complete description is adequate for such computations, at least when it comes
to capturing the overall properties of the star. This only requires a relation for the temperature
gradient needed to transport the luminosity by convection, to replace eqn. (1) for radiative transport.
It is possible to make a rough estimate of the relationship between the temperature gradient and the
luminosity, and we will now derive this estimate. The result is that in most of the star the temperature
gradient is only slightly steeper than the adiabatic gradient determined by eqn. (17).

We assume that a given convective element moves a distance ∆r before being destroyed. As a
result of the destruction, the surroundings receive the energy ∆u ≈ ρcP∆T per unit volume (note we
are assuming that changes take place at constant pressure), where

∆T =

[(
dT

dr

)
ad

− dT

dr

]
∆r (23)

is the temperature difference between the element and the surroundings. If the mean speed of the ele-
ment is v, the convective energy flux can thus be estimated as (see the discussion in lectures concerning
the derivation of this expression)

Fcon ≈ vρcP∆T. (24)

To obtain an estimate of v, we equate the kinetic energy per unit volume of the element, 1/2ρv2, with
the work done by the buoyancy force per unit volume over distance ∆r. From eqns. (6), (10) and (16)
we obtain (neglecting the factor 1/2)

ρv2 ≈ fbuoy∆r ≈ −
[(

dρ

dr

)
ad

− dρ

dr

]
g∆r2

≈ ρ

T

[(
dT

dr

)
ad

− dT

dr

]
g∆r2, . (25)

where we have used equation (18) to obtain the last line of equation (25). To simplify the notation, we
introduce the dimensionless measure of the departure of the temperature gradient from its adiabatic
value

δ ≡ R

T

[(
dT

dr

)
ad

− dT

dr

]
. (26)
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Then we finally obtain

Fcon ≈ ρcPTδ
3/2

(
∆r

R

)2

(gR)1/2, (27)

and hence the convective luminosity (ignoring the factor of 4π)

Lcon ≈ R2Fcon ≈ R3ρcPTδ
3/2

(
∆r

R

)2 ( g
R

)1/2
. (28)

In the interior of the star we can estimate Lcon as

Lcon ≈ Uδ3/2
(

∆r

R

)2

t−1
dyn, (29)

where we have used the relation tdyn ≈ (R/g)1/2, and U ≈ ρcPTR
3 is the total internal energy of the

star. This equation has a simple physical interpretation. If we neglect the factor (∆r/R)2, we have
that

Lcon ≈ (Uδ)(δ1/2/tdyn).

Here (Uδ) is a measure of the internal energy that is transported; the factor δ reduces the energy
transport since it is only the excess internal energy which contributes to the energy transport. Corre-
spondingly, (tdyn/δ

1/2) is the convective time scale, tcon, which can be defined as

tcon =
∆r

v
≈ δ−1/2

(
R

g

)1/2

≈ δ−1/2tdyn, (30)

which determines the time taken to transport the energy. tconis a dynamical time scale, but the effective
gravitational acceleration is reduced, since it is only the difference in density which provides the force,
and hence the time scale is increased by a factor δ−1/2.

In the case of radiative transport, the temperature gradient was determined as being sufficiently
large to transport the energy by radiation. Correspondingly, in the case of convection, δ must be
sufficiently large that the energy can be transported by convection. If we assume that L = Lcon, we
obtain from eqn. (29)

δ ≈

[
L

U

(
∆r

R

)−2

tdyn

]2/3

≈
(
tdyn
tKH

)2/3(∆r

R

)−4/3

, (31)

using tKH ≈ U/L, where tKH is the Kelvin-Helmholtz time scale that we discussed in the lecture of
week 2. In the interior or a star, we may assume roughly that ∆r ≈ R. Using the values of tdyn and
tKH for the Sun, we obtain

δ ≈ 5 × 10−8. (32)

Although these estimates are uncertain, it is obvious that even an extremely small superadiabatic
gradient is sufficient to transport the entire energy by convection. This simplifies the treatment of
convection tremendously: at a given point in the star one determines, by means of eqn. (20), whether
or not the layer is unstable. If this is the case then energy transport occurs through convection, and
δ ≈ 0, and hence

dT

dr
=

(
dT

dr

)
ad

≡ γ − 1

γ

T

P

dP

dr

=
γ − 1

γ

T

P

Gmρ

r2
. (33)

At such a point, eqn. (33) replaces the usual eqn. (1) for the temperature gradient.
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From eqns. (30) and (31) we can estimate tcon as

tcon ≈ δ−1/2tdyn ≈
(
tKH

tdyn

)1/3(∆r

R

)2/3

tdyn

= t
1/3
KHt

2/3
dyn

(
∆r

R

)2/3

. (34)

Assuming again that ∆r ≈ R, we find in the case of the Sun that tcon ≈ 1 year. This is much shorter
than the characteristic evolutionary time scale. Over a time scale not much longer than tcon, matter
in a convection zone must be completely mixed. Hence, we can assume that convection zones are
chemically homogenous with the same chemical composition everywhere.
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