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Week 6

1 Energy transport by radiation

Understanding in detail the interactions between matter and radiation is a subject in its own right,
and an area of on-going and active research in astrophysics. This is particularly true in relatively
low density environments, where photons can travel significant distances without being absorbed or
scattered, and where the interactions between electromagnetic waves and ions/atoms/molecules occurs
largely through line emission and absorption. These considerations are important in the interstellar
medium, and in the outer atmospheric layers of stars. In the deep interiors of stars, however, we can
adopt a simplified description that agrees with the complete theory when the mean free path of photons
is very short compared to the global length scales of interest.

1.1 Mean free path and opacity

The mean free path of a photon depends on a microscopic interaction between radiation and matter.
Traditionally, this interaction is described in terms of a cross section, σR, such that, on average, a
photon interacts with an atom if it passes within the area σR around the atom. The probability that
an interaction occurs over a distance dx is given by:

P (dx) = nσR dx, (1)

and hence we can see that on average the distance travelled such that on interaction takes place is
given by

λph =
1

nσR
, (2)

where λph is the mean free path of a photon (i.e. the mean distance a photon travels between in-
teractions with the particle constituents of matter). Instead of using λph to describe the interaction
between matter and radiation, it is conventional, and convenient, to use the opacity, κ, defined as

κ =
1

ρλph
=
n

ρ
σR. (3)

Note that n/ρ is the number of atoms per unit mass; hence κ is the total cross section per unit mass.
If σR and n/ρ is independent on the state of the gas (as described by its density and temperature), it
follows that κ is also independent of ρ and T .

Typical values for the opacity of stellar material are of order κ ≈ 1 cm2 g−1 (or 0.1 m2 kg−1). With
typical values of density of order ρ ≈ 1 g cm−3, the typical values of the mean free path are λ ≈ 1
cm. i.e Stellar matter is very opaque, with the mean free path � the radius of a star. Each photon is
therefore subject to an enormous number of absoptions, re-emissions and scatterings as it moves from
the centre of the star towards its surface. This allows us to treat the radiation transport through the
star as a diffusion process, resulting in an enormous simplification of the problem.

1.2 The diffusion approximation

In this section we will show that the diffusive flux, j, of transporting particles (measured in units: per
unit area per unit time) between places of different particle density, n, is given by

j = −D∇n (4)

where D is the diffusion coefficient,

D =
1

3
vλ, (5)

determined by the average values of mean velocity, v, and the mean free path, λ of the particles. This
result is, of course, of much wider applicability, not just limited to the problem of radiation diffusion.
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We consider the transport of particles in a time interval dt through an area dA orthogonal to the x

Figure 1: Geometry of photon passing through a
small element of area.

axis at x = 0, as shown in Fig. 1. We work on length
scales ≤ λ so that the particles move without mutually
colliding. We choose the x axis to point in the direc-
tion of ∇n, so that n = n(x) in the vicinity of x = 0,
and dn/dx > 0. We describe the direction of motion
of the particles by the angle θ that their trajectories
make with the x-axis. The motion of the particles is
assumed to be isotropically distributed in direction,
such that when considering the motion of all particles
within an infinitesimal volume, their directions of mo-
tion correspond to 4π steradians of solid angle. This
also means that the particles passing through the small
element of area dA are also coming from all directions, corresponding to 4π steradians of solid angle.
Note that an element of solid angle is given by dΩ = sin (θ)dθdφ. When integrated over a sphere this
gives Ω = 4π steradians.

Then, out of the total number of particles, the fraction of particles with directions between θ and
θ + dθ is given by

1

4π

∫ 2π

0
dφ sin θdθ =

2π sin (θ)dθ

4π
.

On average, they come from a distance x = λ cos (θ) from the small area dA through which they are
passing, where the particle density is n(x) = n(−λ cos (θ)). Their contribution to the flux of particles
through dA is given by

1

2
sin θdθ · n(−λ cos θ) · vdt× dA cos θ. (6)

We note that in eqn. (6) the factor

1

2
sin θdθ · n(−λ cos θ) · vdt · dA

is the flux of particles through unit area orthogonal to the propagation direction, and the factor cos θ
accounts for the change in the projected area through which the particles are passing when approaching
at an angle θ to the normal (i.e. the change in area that particles with trajectories defined by angle θ
see as they move towards the small element of area dA.).

The net number of particles, dN , passing through dA from the left and right during time interval
dt is obtained by integrating over all directions:

dN =
1

2
v dt dA

∫ π

0
n(−λ cos θ) · cos θ sin θdθ

≈ 1

2
v dt dA

∫ π

0

(
n(0) + x

dn

dx

∣∣∣∣
x=0

)
cos θ sin θdθ

=
1

2
n(0) v dt dA

∫ π

0
cos θ sin θdθ

− 1

2
v λ

dn

dx

∣∣∣∣
x=0

dtdA

∫ π

0
cos2 θ sin θdθ

= −vλ
3

dn

dx

∣∣∣∣
x=0

dA dt, (7)

where we used a Taylor expansion of n(x) about the point x = 0: n(x) ≈ n(0) + x (dn/dx)x=0 .
Comparing with eqn. (4), we have |j| = dN/(dA·dt) and ∇n = dn/dx, and thus the diffusion coefficient
D is given by the equation (5).

1.3 Equation of radiative transport

We now apply the diffusion approximation to the energy transport by radiation. In order to obtain
the diffusive flux of radiative energy, F, we replace the number density of transporting particles,
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n, by the energy density of radiation, uR, the mean velocity, v, by the speed of light, c, and λ
by λph = 1/(κρ). Owing to the spherical symmetry of the problem in a star, F only has a radial
component, Fr = |F| = F , and ∇n reduces to the derivative in the radial direction, duR/dr. Then
eqns. (4) and (5) give immediately that

F = −1

3
cλph

duR

dr
= −1

3

c

κρ

duR

dr
. (8)

where F is measured in units of energy per unit area per unit time (Joules per metre2 per second). To
evaluate the radiative energy flux, F , we now only need to specify the energy density of the radiation
and the opacity.

The radiation energy density, uR, in the deep stellar interior is described by the black body ap-
proximation. A black body is a perfect absorber and radiator. If the radiation is in thermodynamic
equilibrium with its surroundings, as for example in an enclosure or cavity whose walls are maintained
at constant temperature T , each unit area of the surface emits as much radiant energy as it absorbs
at each frequency, and the conditions required to obtain black body radiation are fulfilled.

The specific intensity, Iν , is the amount of energy emitted per unit frequency interval per unit time
flowing through unit area in unit solid angle. It may be expressed in the form

dE = Iνdν dS dt dΩ (9)

or equivalently
dE = Iνdν dA cos θ dt dΩ. (10)

Figure 2: Geometry associated with emission
from a small area, for example on the surface of
a star.

See Fig 2 for a sketch of the geometry associated with
the emission from a small element of area. For black
body emission the specific intensity is given by the
Planck function

Iν = Bν(T ) =
2hν3

c2

1

exp (hν/kBT )− 1
, (11)

where ν is the frequency (ν = c/λ, where λ is the wave-
length), h is Planck’s constant, kB is Boltzmann’s con-
stant, and c is the speed of light. The energy emitted
in unit time by unit area of a black body in all direc-
tions and across all frequencies is called the flux (or the
bolometric flux) and differs from the intensity because
it does not have a directional dependence. Hence to
obtain the flux we integrate over all frequencies and
solid angles:

F =

∫ ∞
ν=0

∫ θ=π/2

θ=0
Bν cos θ · 2π sin θdθ dν

= π

∫ ν=∞

ν=0
Bνdν

= σT 4, (12)

where the last equality comes from the Stefan-
Boltzmann law F = σT 4 . From this expression we can deduce that the total luminosity emitted
by a spherical black body of radius R is given by L = 4πR2σT 4, where

σ =
2π5k4

B

15c2h3
(13)

is the Stefan-Boltzmann constant (the last expression can be obtained using
∫∞

0 x3dx/(exp (x)− 1) =
π4/15).
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We now need a relation between integrated radiation intensity

I =

∫ ∞
0

Iνdν =

∫ ∞
0

Bνdν =
σ

π
T 4 (14)

and the energy density, uR (the energy contained in the radiation field per unit volume). Using
equation (9) we can write

dE = Bνdν dS dt dΩ = Bνdν dS
dl

c
dΩ (15)

where dl represents the distance travelled at speed c by the radiation in time dt. From Fig 2 it is clear
that dV = dS dl (i.e. the product of dS and dl corresponds to a small volume element. Hence we can
write

dE

dV
≡ duR =

1

c
Bνdν dΩ. (16)

Hence we obtain

uR =
1

c

∫ ∞
ν=0

∫ 4π

Ω=0
Bνdν dΩ. (17)

Hence from equation (12) we obtain the result

uR = 4π
I

c
=

4σ

c
T 4. (18)

Introducing

a =
4σ

c
=

8π5k4
B

15c3h3
, (19)

which is known as the Stefan radiation constant, a = 7.56× 10−16 J m−3 K−4, we have

uR = aT 4, (20)

the expression for the radiation energy density which we need for our analysis.
Returning to eqn. (8) for the diffusive flux of radiative energy, F , we get

F = −4acT 3

3κρ

dT

dr
. (21)

If the energy transport occurs only through radiation, the total amount of energy transported through
a sphere of radius r in unit time is

L(r) = 4πr2F.

We therefore arrive at the equation
dT

dr
= − 3κρL(r)

16πacr2T 3
, (22)

which relates the temperature gradient to L(r), and is one of the fundamental equations of stellar
structure.

1.4 Opacity in stellar interiors

The interaction between radiation and matter in stars is dominated by different processes at different
temperatures. At lower temperatures, where ionisation is not complete, opacity is dominated by bound-
free interactions, where a photon photo-ionises an atom or an ion, leading to absorption of the photon.
At somewhat higher temperatures, free-free interactions dominate. Here, an unbound electron interacts
with an ion, causing it to decelerate and be deflected, and at the same time it absorbs a photon, boosting
its energy. For even higher temperatures, where photo-ionisation is complete, opacity is dominated
by electron scattering. Here, the electric field of a photon causes an electron to oscillate, and this
oscillating electron emits a photon in a direction perpendicular to its oscillation axis and with the
same frequency as the original photon. This process appears as elastic scattering between the photon
and electron.
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The computation of the cross section σR is in general a very complicated numerical problem. Hence,
it is usual in computations of stellar models to use pre-calculated tables which tabulate how the opacity
varies with ρ, T and the chemical composition. There are, however, simple approximations that can
be adopted. One of these is known as Kramers approximation, which is given by

κ = 4.3× 1025Z(X + 1)ρT−3.5 cm2g−1. (23)

This opacity law dominates in the interiors of relatively low mass stars, where the temperature is
relatively low, and bound-free and free-free interactions dominate the opacity. At higher temperatures,
i.e. in the deep interiors of more massive stars, where scattering off free electrons dominates, the cross
section σR for this process is independent of ρ and T ; the same is true of the number, ne/ρ, of electrons
per unit mass, if we assume that the gas is completely ionised. Hence the opacity is also independent
of ρ and T (see eqn. 3), and is given by

κ = 0.2(X + 1) cm2g−1. (24)

1.5 The main sequence - simple scaling relations

We can estimate the luminosity of stars from the equation of radiative transport, combined with our
previous estimates of the temperature and density in stars. As usual, the purpose is to get a feeling,
within an order of magnitude, for the characteristic value of the luminosity, and an idea about how it
varies with the global parameters of the star. Hence, in general we neglect factors of order unity.

We assume the ideal gas law; then we have an estimate for the temperature

T ≈ GMµmH

kBR
(25)

and we estimate the mean density

ρ ≈ M

R3
. (26)

The luminosity is determined by the equation of radiative transport (eqn. 22) which we write as

L = −4πr2ac

3κρ

dT 4

dr
. (27)

We approximate the opacity by a power law

κ = κ0ρ
pT−q (28)

(parameterising eqns. 23 & 24). Finally, we replace r by R and approximate −dT 4/dr by T 4/R. Then
we obtain

L ≈ acRT 4+q

κ0ρp+1

≈ ac

κ0

(
GµmH

kB

)4+q

R3p−qM3+q−p. (29)

It may seem peculiar that we can calculate stellar luminosities without taking into account the processes
that are responsible for energy generation. The explanation is that the star is in equilibrium. The
energy production has to adjust itself to produce the amount of energy necessary to satisfy eqn. (29).
This is possible because the rate of energy production is a very sensitive function of temperature, as
discussed in the lecture of week 5. Hence, a small modification of the central temperature is sufficient
to obtain the correct luminosity.

We can also estimate L using the energy generation rates. Comparison of the two results allows
us to establish simple scaling relations which describe the location of the main sequence stars on the
Hertzsprung-Russell diagram. We distinguish between two cases: lower mass stars that occupy the
lower main sequence; higher mass stars that occupy the upper main sequence.
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1.5.1 Lower main-sequence, relatively low mass stars

Here the temperature is relatively low, and the opacity is dominated by atomic processes, in particular
bound-free transitions. Hence the opacity can be approximated by Kramers law. i.e. p = 1 and
q = 3.5. Then, for stars of nearly the same chemical composition, eqn. (29) gives

L ∝M5.5R−0.5 (30)

The energy generation is dominated by the PP chain. In the lecture of week 5, when considering
polytropic models, we derived the expression

L = AnX
2µα

M2+α

R3+α
(31)

where An is a constant that depends only on the polytropic index. We note that eqn. (31) was derived
using the expression

εpp = ε0X
2ρTα

for the energy generation rate per unit mass. For stars of nearly the same polytropic index, eqn. (31)
gives (using α = 4.5)

L ∝M6.5R−7.5. (32)

We also have a relation between stellar luminosity and effective temperature (L = 4πR2σT 4
eff), which

gives
L ∝ T 4

effR
2. (33)

From these relations we have

R ∝M1/7, L ∝M38/7, Teff ∝M9/7. (34)

The relation between L and Teff , represented on the H-R diagram, is thus

L ∝ T 38/9
eff . (35)

Hence, we predict that stars of the lower main sequence shall be represented by a straight line in the
log10 L-log10 T plane of the H-R diagram with a slope of about 4.

1.5.2 Upper main seqeunce, relatively massive stars

Here the temperature is relatively high, and the opacity is dominated by the electron scattering. Hence,
we have p = q = 0 in eqn. (28), and therefore

L ∝M3. (36)

The energy generation for massive stars is dominated by the CNO cycle. The energy generation rate
per unit mass, ε ∝ ρT 16 for stars of similar chemical composition (note we have εCNO = ε1XZρT

α

with 12 < α < 20 from the lecture of week 5). We can thus use eqn. (31) but now with α = 16, giving

L ∝M18R−19. (37)

We can use the relation L = 4πR2σT 4
eff , and we have the relations

R ∝M15/19, L ∝M3, Teff ∝M27/76. (38)

The required relation between L and Teff is now

L ∝ T 76/9
eff . (39)

The predicted slope of the upper main sequence in the log10 L-log10 T plot of the H-R diagram is now
about 8.5, about twice as steep as for the lower main sequence.

The scaling relations developed in this section are, of course, very rough. They are based on the
simplest order of magnitude estimates for the luminosity obtained in eqn. (29) using the equation for
radiative energy transport eqn. (22). As we will find out in the next lecture, energy is not always
transported by radiation in stars. Nevertheless, these results are not very far from agreeing with
observations, and allow us to obtain an insight into the origins of the well-defined main-sequence
domain of the H-R diagram, without going into detailed numerical calculations of stellar structure.
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