
Stellar Structure and Evolution SPA7023 R.P. Nelson

Week 5

1 Nuclear energy generation

During most of their lifetimes, stars derive the energy that they radiate from nuclear reactions. The
gradual change in chemical composition as the reactions proceed determines the evolution of stars.
Hence, to follow the life history of a star, it is important to understand the properties of the nuclear
reactions.

Nuclear processes in stars involve fusion of nuclei to build heavier nuclei, and at the end stages of
stellar evolution fission processes may also become important. During these processes, key physical
quantities are conserved:

• The baryon number - the number of protons, neutrons and their anti-particles

• The lepton number - the numbers of electrons and neutrinos and their anti-particles

• Total charge

• Total mass-energy

According to Einstein’s mass-energy relationship, a nuclear reaction in which the total mass of the
final products is smaller than that of the initial reacting nuclei is exothermic, that is it releases an
amount of energy

Q =

∑
i

mi −
∑
f

mf

 c2, (1)

where m represents the mass and c is the speed of light. The mass, m, of a nucleus with atomic number
Z and mass number A differs from the sum of the masses of the Z protons and (A − Z) neutrons,
which build up the nucleus, by the quantity

∆m = Zmp + (A− Z)mn −m, (2)

where the total binding energy is given by

B = ∆mc2. (3)

In order to dissociate the nucleus into its component neutrons and protons, one needs to supply an
amount of energy B = ∆mc2.

A useful quantity to consider is the binding energy per nucleon, B/A, for a nucleus. This quantity is
plotted in Fig. 1, and shows that there is a sharp rise for A > 1,

Figure 1: Binding energy per nucleon

followed by a broad maximum of 8.7 MeV around
A = 56, with a shallow drop-off for A > 60. Fu-
sion reactions are expected to proceed when the total
amount of binding energy associated with the reaction
products exceeds that associated with the reactants.
As indicated by the diagram, it is very energetically
favourable to fuse hydrogen nuclei to form 4He. It re-
mains energetically favourable to fuse elements up to
56Fe, which sits at the peak of the energy per nucleon
figure. It becomes energetically unfavourable for fis-
sion reactions to occur for heavier nuclei. For example,
nuclear reactions that fuse 112 nucleons to form a pair
of 56Fe nuclei will release at total of ≈ 2×56×8.7 MeV
of binding energy (= 974.4 MeV). Combining two 56Fe
nuclei to form a 112Ca (Cadmium) nucleus will release a total of ≈ 112 × 8 (= 896 MeV), which is
smaller than the binding energy associated with the two 56Fe nuclei. Hence, at the end stages of
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stellar evolution the reactions that build elements heavier that Fe and Ni are endothermic rather than
exothermic as they require the input of energy to proceed. As will be discussed in a future lecture, this
explains why iron and nickel are abundant elements in the Solar System: they are the end products of
nucleosynthesis in massive stars.

1.1 The Coulomb barrier

In order for a fusion reaction to occur, two nuclei need to approach one another and collide such
that the distance of closest approach equals the sum of the sizes of the nuclei, as it is at these dis-
tances that the strong nuclear force can operate to bind the nuclei together. The radius of a hy-
drogen nucleus (proton) is rp ≈ 10−15 m. As the two nuclei approach one another, however, they
are repelled by the electrostatic Coulomb force which forms a potential barrier that must be over-
come to allow the nuclei to touch. This potential barrier is illustrated by the upper image in Fig. 2.

Figure 2: Top image shows schematic diagram of
Coulomb barrier and the attractive strong force.
Bottom image shows exponentially decreasing am-
plitude of wavefunction as nuclei tunnel through
Coulomb barrier.

We can estimate the size of the potential barrier, and
hence the amount of kinetic energy that the nuclei need
to have in order to overcome it, by calculating the
work that needs to be done in bringing two nuclei from
infinity to within touching distance

W =

∫ (r1+r2)

∞
F·dr =

∫ (r1+r2)

∞

Z1Z2e
2

4πε0r2
dr =

Z1Z2e
2

4πε0(r1 + r2)
(4)

where ε0 = 8.85 × 10−12 m−3 kg−1 s4 A2 is the per-
mittivity of free space. From lecture 2, we know that
the average kinetic energy of the nuclei in a plasma of
temperature T is 〈U〉 = (3kBT )/2, hence we can es-
timate the temperature at which the Coulomb barrier
can be overcome during a typical collision by setting
〈U〉 = W , giving

T =
Z1Z2e

2

6πε0kB(r1 + r2)
. (5)

This gives an estimate of T = 1010 K, which is obvi-
ously much higher than the value of T = 1.5 × 107 K
that is estimated for the centre of the Sun. We should
also consider the particles in the Maxwell-Boltzmann
distribution that have higher energies than the aver-
age, as these may be able to overcome the Coulomb
barrier. The probability of having an energy between
E1 and E2 in a plasma of temperature T is given by∫ E2

E1

f(E)dE =

∫ E2

E1

2

√
E

π

(
1

kBT

)3/2

exp

(
− E

kBT

)
dE. (6)

Approximating the integrand as a constant centred on the energy associated with the Coulomb barrier
derived above (which we denote as EC), we can make a simple estimate of the probability of finding
particles with energies in range EC−EC/2 ≤ E ≤ 2EC +EC/2 where EC corresponds to the Coulomb
barrier energy

2

√
EC

π

(
1

kBT

)3/2

exp

(
− EC

kBT

)∫ EC+EC/2

EC−EC/2

dE = 2

√
EC

π

(
1

kBT

)3/2

exp

(
− EC

kBT

)
EC (7)

For a temperature of T = 1.5 × 107 K this gives a probability P (EC) = 5 × 104 × exp (−1000).
Such a small probability indicates that there are insufficient particles in the high energy tail of the
Maxwell-Boltzmann distribution to explain the energy output of the Sun.
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1.2 Quantum tunnelling

The solution to the problem of overcoming the Coulomb barrier can be found in quantum mechanics,
and was originally elucidated by George Gamow. Heisenberg’s uncertainty principle states that there
is a fundamental uncertainty in defining both the position and momentum of two nuclei as they collide,
and hence at the moment of closest approach the two nuclei may be closer together than permitted by
classical physics such that they have crossed the Coulomb barrier and are close enough to be bound
by the strong force. This process is known as quantum tunnelling, and heuristically the probability
of it occurring scales as exp (−r0/λ), where r0/λ is the ratio of the classical turning point, r0, to the
de Broglie wavelength of the particles, λ = h/p, where p is the particle momentum and h is Planck’s
constant. The idea here is that quantum tunnelling becomes more probable when the distance of closest
approach between the nuclei becomes comparable to or smaller than the de Boglie wavelength. The
temperature, Ttunnel, at which the average particle collision has λ ≈ r0 can be estimated by combining
the Coulomb energy

E =
Z1Z2e

2

4πε0r0
(8)

with the mean thermal energy of a gas a temperature T

E =
3

2
kBT

and the de Broglie wavelength

λ =
h

p

and the relation between energy and momentum

E =
p2

2m
,

giving the expression

Ttunnel =
4mH

3kBh2

(
Z1Z2e

2

4πε0

)2

. (9)

Note that equation (9) is obtained by substituting r0 → λ in equation (8) and solving for the temper-
ature. For hydrogen nuclei, we find that Ttunnel ≈ 2 × 107 K, indicating that tunnelling will have a
sufficient probability of occurring at the centre of the Sun to explain the observed energy output.

1.3 Nuclear reaction rates and energy release

We now consider the rate at which nuclear reactions occur between two types of nuclei, A and B, and
introduce the concept of the reaction cross section, σ(v). This has the units of length2, and is related
to the probability that a reaction will occur as a nucleus of type A approaches a nucleus of type B
with collision velocity v.

Using a simple geometrical argument, and working in a frame in which a nucleus of type A moves
relative to nuclei of type B with velocity v, we can see that the volume swept out per unit time by a
nucleus of type A is given

VA = σ(v)v. (10)

The number of reactions that the nucleus of type A can experience is then

NR = n(B)σ(v)v, (11)

where n(B) is the number of nuclei of type B per unit volume. The number of reactions per unit
volume per unit time is then

R(v) = n(A)n(B)σ(v)v, (12)
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where n(A) is the number of nuclei of type A per unit volume. Note R(v) is the reaction rate per
unit volume for the specific value of velocity v. We need to integrate over the velocity to get the total
reaction rate

R = n(A)n(B)

∫ ∞
0

vσ(v)f(v)dv ≡ n(A)n(B)〈σ(v)v〉
[
m−3 s−1

]
(13)

where f(v) is the Maxwellian velocity distribution, and the angle brackets denote a weighted average.
We now need to consider what form to expect for 〈σ(v)v〉. We expect the fusion cross-section σ(v)

to be proportional to the target area seen by the reacting nuclei, which is given by to πλ2, where λ is the
de Broglie wavelength. We note that λ2 ∝ 1/E, where E is the kinetic energy of the particles. We also
expect the fusion cross-section to depend on the details of the nuclear physics, which we encapsulate
through the factor S(E), noting that this is obtained experimentally. Finally, the probability of a
reaction occurring must be proportional to the probability of quantum tunnelling. This is obtained by
solving the Schroedinger equation for the potential shown in Fig. 2, and noting that the probability
of finding a pair of nuclei with a given separation, d, is proportional to |ψ(d)|2, where ψ is the wave
function (see discussion in Chapter 4 of The Physics of Stars by A.C. Philips). The resulting probability
of tunnelling is given by

P (E) = exp

(
−
√
EG

E

)
,

where EG is the Gamow energy

EG = 2mRc
2(παZ1Z2)

2 (= 493 keV for proton− proton fusion)

where mR = mAmB/(mA +mB) is the reduced mass and α is the fine structure constant

α =
e2

4πε0~c
' 1

137
.

Note: For two colliding nuclei, the energy available for overcoming the potential barrier is given by
the relative kinetic energy

U =
1

2
mrv

2
12 (14)

where mr is the reduced mass, defined by mr = m1m2/(m1+m2), and v12 = |v1−v2| is the magnitude
of the relative velocity. For a Maxwellian distribution we can write v = v12.

Collecting terms we can write

σ(E) =
S(E)

E
exp

(
−
√
EG

E

)
(15)

In a Maxwellian distribution, the probability that a particle will have energy E at kinetic temperature
T is given by

f(E)dE =
2√
π

(
E

kBT

)
exp

(
− E

kBT

)
dE

(kBTE)1/2
(16)

Noting that v =
√

2E/mR, we can write

〈σ(v)v〉 =

∫ ∞
0

S(E)

E
exp

(
−
√
EG

E

)√
2E

mR

2√
π

(
E

kBT

)
exp

(
− E

kBT

)
dE

(kBTE)1/2
(17)

which can be simplified to read

〈σ(v)v〉 =

(
8

πmR

)1/2 1

(kBT )3/2

∫ ∞
0

S(E) exp

(
−
√
EG

E

)
exp

(
− E

kBT

)
dE. (18)
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Figure 3: This figure illustrates the competing
influences of the decreasing probability of having
high energy particles in the Maxwell distribution,
and the increasing probability of tunnelling at high
energies, giving rise to the Gamow peak.

Note that this applies to some fixed temperature, T .
The nuclear reaction rate can clearly be seen to depend
on two competing factors: the exponentially decreas-
ing probability of particles having energies higher than
≈ kBT in a Maxwellian distribution, and the increas-
ing probability of quantum tunnelling occurring as E
increases towards EG. As illustrated by Fig. 3, the in-
tegrand in eqn. (18) in peaked around a specific range
of energies that correspond to those at which most of
the nuclear reactions take place. This is known as the
Gamow Peak.

The amount of energy released per reaction is de-
noted by Q, as discussed above. Hence the rate of
energy generation per unit volume is given by

dU

dt
= n(A)n(B)Q〈σ(v)v〉 [J m−3 s−1]. (19)

and the rate of energy generation per unit mass is then

ε =
n(A)n(B)

ρ
Q〈σ(v)v〉 [J kg−1 s−1]. (20)

The total luminosity of a star may then be expressed as

L =

∫
M
εdm =

∫
V
ερdV =

∫ R

0
4πr2ερdr (21)

where the values of ε are determined by the physical conditions in the star and the nuclear reactions
that can occur. We now consider which nuclear reactions actually take place in a star, and the rate of
energy generation associated with them.

1.4 Hydrogen burning

During most of their lives, stars derive their energy from the fusion of hydrogen into helium, which
can be written schematically as

41H→4 He + 2e+ + 2νe (22)

where we note that this reaction conserves the total charge, baryon number and lepton number (noting
that positrons are anti-particles and hence have negative lepton numbers that balance those of the
emitted neutrinos). Although it is clear that the reaction does not proceed as outlined in eqn. (22),
since the probability of getting four hydrogen nuclei to collide and fuse simultaneously is completely
negligible, the difference in the masses of the reactants and the products allows us to use the mass-
energy equivalence to determine that the energy released by converting 4 hydrogen nuclei to a helium
nucleus is Q = 26.73 MeV.

When calculating the energy generation rate, ε, we must subtract the neutrino energy, since neu-
trinos escape directly from the star. The correction to be applied, however, depends on the details
of the reactions that produce the neutrinos, since the branching ratios between the different reactions
depend on the conditions within the star (namely the density and temperature).

There are two basic ways in which the overall reaction (22) may be accomplished: the PP-chains,
which directly convert H to He; and the CNO cycle, which involves C, N and O acting as catalysts in
reactions that ultimately convert H to He.

The various branches associated with the PP-chain are shown in Fig. 4, with the indicated branch-
ing ratios being appropriate for conditions in the Sun. A colour diagram that also shows the energies
associated with the PP-chain reactions is shown at the end of these lecture notes in Fig. 6. The first
reaction is the collision of two protons, leading to the formation of a deuterium nucleus. Although
this reaction has the smallest Coulomb barrier, it is the slowest of all in the PP-chain because it
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involves a beta decay of a proton to a neutron that involves the weak interaction. Hence, this re-
action controls the combined rate of energy generation of the PP-chains. The remaining reactions
are in equilibrium, in the sense that equal amounts of 2H and 3He are produced and destroyed.

Figure 4: Schematic of the PP-chains.

After the formation of 3He, the PP-chain can
proceed in three branches. The branching ra-
tios between the different parts of the PP-chain
depend on the temperature. In the Solar core,
the PP-I chain dominates, and the PP-III chain
makes a very small contribution to the energy
generation rate. On the other hand, the PP-III
chain is very important for attempts to detect
solar neutrinos: due to their high energies the
neutrinos from this chain dominate measurement
in 37Cl detectors, and only the PP-III neutrinos
can be seen by the detectors based on neutrino
scattering in water. The strong temperature de-
pendence of the branching ratios makes the detec-
tion of these neutrinos a key test for the central
temperature of the Sun.

The energy generation rate per unit mass from the PP-chain can be expressed as

εpp = 2.6× 10−37X2ρT 4.5 J s−1 kg−1 (23)

where X is the hydrogen mass fraction. This can be written more generally as

εpp = εpp0X
2ρTα 3.5 ≤ α ≤ 6 (24)

for some constant value of εpp0.
Using eqns. (21) and (24), and assuming the hydrogen abundance is constant in the stellar interior,

the total luminosity can be estimated as

L = 4πεpp0X
2

∫ R

0
Tαρ2r2dr. (25)

When the star is approximated by a polytrope of index n, we have ρ = ρcθ
n, T = Tcθ and r = (R/ξ1)ξ,

and hence

L = 4πεpp0X
2Tαc ρ

2
c

(
R

ε1

)3 ∫ ε1

0
θ2n+αξ2dξ. (26)

With Tc = bnGMµmH/(kBR) and ρc = an3M/(4πR3, as presented in week 4, we obtain the simple
scaling relation

L = AnX
2µα

M2+α

R3+α
(27)

where µ is the mean molecular weight and An depends on the polytropic index n only.
The CNO cycle operates in stars that contain C, N and O, and proceeds as shown in Fig. 5. The

reactions start with 12C and proceed through a sequence of proton captures, interrupted by positron
(beta) decay with emission of neutrinos; 12C is produced at the end of the sequence and hence acts as
a catalyst. The conversion of 14N to 15O has the smallest probability of all the reactions in the cycle;
hence, once the cycle operates in equilibrium this reaction determines the overall reaction rate.

An estimate of the energy generation rate per unit mass by the CNO cycle, appropriate for typical
stellar conditions, is given by

εCNO = 7.9× 10−118XZρT 16 J s−1 kg−1 (28)

where we have assumed that that the total abundance of CNO elements is a fixed fraction of the heavy
element abundance, Z. A more general expression is

εCNO = ε1XZρT
β 12 ≤ β ≤ 20. (29)
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Figure 5: Schematic diagram of
the CNO cycle.

We see that the energy generation rate from the CNO cycle has
a much greater sensitivity to the temperature than the PP-chain.
Hence, the PP-chains dominate at relatively low temperatures and
the CNO cycle dominates at higher temperatures. Given how our es-
timates for the central temperature in the lectures from weeks 3 and
4 scale with the stellar mass, we expect the CNO cycle to dominate
hydrogen burning in massive stars.
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Figure 6: Schematic diagram of the PP-chains.
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