
Stellar Structure and Evolution SPA7023 R.P. Nelson

Week 1

1 Basic observations of stars

Astronomy is unique among the sciences as all observations, except for those conducted by a few
interplanetary probes and space-craft sitting in the Solar wind, must be undertaken remotely. We
cannot perform experiments on stars or undertake sample return missions from them. The main
information we can obtain comes from the electromagnetic radiation we receive. If two stars orbit one
another then their observed orbital motion can also provide information about their masses. In recent
years, NASA’s Kepler mission undertook long term photometric monitoring of more than 100,000 stars,
allowing oscillation modes to be identified in some of them using asteroseismic analysis, leading to much
improved knowledge about the interiors of these stars. Except for very few stars, they all appear as
unresolved points of light, and hence the electromagnetic radiation we receive is integrated over their
emitting surfaces. The Sun is an obvious exception, and for this particular star we can conduct very
detailed observations which aid our understanding of this celestial body.

1.1 Stellar positions and distances

The mapping of stellar positions on the night sky goes back to the ancient Babylonians.

Figure 1: In 3D space the stars in Ursa
Major are located far from each other.
Only their projected positions on the ce-
lestial sphere give rise to an apparent pat-
tern.

When considering the relative positions of different stars on
the sky, the key quantity of interest is the angular separa-
tion, i.e. the angles between the lines-of-sight to the stars.
Traditionally these angles are measured in degrees (o), or its
subdivisions arcminutes (′) or arcseconds (′′), defined by

1o = 60′ = 3600′′.

We note that 1 radian = (180o/π) = 206265′′.
When considering stellar structure and evolution, the rel-

ative positions of the stars on the celestial sphere are of little
interest, but measuring the distances to stars is of fundamen-
tal importance. For example, being able to determine obser-
vationally the intrinsic luminosity (i.e. total energy emitted
per unit time) of a star relies on having an accurate measurement of its distance, and hence when
comparing theoretical stellar models with observations it is important to know the distances to stars.

1.1.1 Parallax method

The method used to measure distances to nearby stars is called the parallax method.

Figure 2: Diagram demonstrating how
the parallax method works.

As shown by figure 2, this works by measuring the apparent
position on the sky of nearby stars relative to the fixed back-
ground stars as the Earth orbits around the Sun. The change
in direction to a star that occurs when the Earth moves from
one side of its orbit to the other is defined to be 2×p, where p
is the parallax of the star. Hence p is the angle subtended by
the radius of the Earth’s orbit as viewed from the star, and
hence we can write

tan p =
1AU

d
(1)

where d, the distance to the star, is measured in units of AUs in equation 1. Now p is a very small
angle, so

p ≈ 1AU

d
(2)

where p is still measured in radians. If p has a value equivalent to 1 arcsec then we know that d = 206265
AU (since there are 206265 arcsecs in one radian). We now define 1 parsec to be the distance to a star
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which has a parallax angle of 1 arcsec (i.e. 1 pc = 206253 AU). Writing eqn. (2) with p in units of
arcsecs and d in parsecs gives

p(arcsec) =
1

d(pc)
(3)

where 1 parsec = 206253× 1.5× 1011 m = 3.09× 1016 m.
The nearest star to the Sun has a parallax of 0.76", and hence a distance of 1.32 pc. The most

accurate ground-based parallax measurements have a precision of about 0.01", allowing the distances of
a few thousand stars in the Solar neighbourhood to be determined. The European Space Agency (ESA)
satellite HIPPARCOS, which was launched in 1989, measured the parallaxes of more than 100,000 stars.
ESA’s Gaia mission, which launched in 2013, is in the process of measuring the parallaxes of more
than 1.3 billion stars with a precision of 20 µ-arcsecs. A recent data release for these stars occurred in
April 2018, and continued future observations will refine these measurements.

1.2 Apparent and absolute magnitudes

When measuring the brightness of a star using a telescope and a detector, the quantity that we actually
measure is the flux (denoted by F ), defined to be the amount of energy being received per unit area
per unit time. This is related to the intrinsic luminosity of the star, L, by the expression

F =
L

4πd2

where d is the distance to the star.
Prior to the use of the telescope and modern detectors, astronomers adopted the magnitude scale

to denote the brightnesses of stars, a scale that was introduced originally by the Greek astronomer
Hipparchus in the 2nd century BC.

The apparent magnitude scale of ancient Greece was based on defining the brightest stars as
having an apparent magnitude m = +1 and the dimmest stars (just visible to the naked eye) with
a magnitude m = +6. Magnitude m = +2 stars were perceived to be half as bright as magnitude
m = +1 stars, and magnitude m = +3 stars were half as bright as m = +2 stars. Hence the magnitude
scale is logarithmic since each fixed increment along the scale corresponds to a change by a specific
factor (in this case an increment of unity corresponds to a factor of 2 change in perceived brightness).
A magnitude m = +1 star is therefore 25 = 32 times brighter than a magnitude m = +6 star. A key
point to note is that stars with lower apparent magnitude are brighter than stars with higher apparent
magnitudes!.

This system was formalised in 1856 by defining a m = +1 star as being 100 times brighter than
a m = +6 star. Therefore, stars that differ in apparent magnitude by +1 have a brightness ratio of
1001/5 = 2.512. Each step on this logarithmic scale corresponds to a factor of 2.512 in brightness.

The relationship between the apparent magnitudes and fluxes received from two stars, labelled 1
and 2, is given by

m2 −m1 = 2.5log10(F1/F2)

since log10(100) = 2 and by definition m2−m1 = 5, for stars that differ in flux by a factor of 100. We
can rewrite the above equation as

m2 −m1 = 2.5log10(F1)− 2.5log10(F2),

and if we choose star 2 to be a calibration star whose magnitude is defined to be m2 = 0, then we
obtain

m1 = −2.5log10(F1) +K1

where K1 is a constant given by K1 = 2.5log10(F2), and F2 is the flux received from the calibration
star that defines the zero point of the magnitude scale. The star Vega is used to define this zero
point, so any star from which we receive the same flux on Earth as we do from Vega has zero apparent
magnitude.

By definition, the absolute magnitude of a star is defined to be the apparent magnitude that a
star would have if placed at a distance of 10 parsecs from the Earth. Absolute magnitude is denoted
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with an upper case M . Apparent magnitude is denoted with a lower case m. If the flux of a star
measured at its current distance from Earth is denoted F∗, and the flux measured at 10 parsecs would
be F10, then M and m are related by

m−M = 2.5log10(F10/F∗).

If we measure the actual distance to the star, d, in parsecs, then we can write

F10

F∗
=

L

4π102
× 4πd2

L
=

(
d

10

)2

.

Hence we can write
m−M = 5log10(d)− 5.

The difference between the apparent and absolute magnitudes expressed in the previous equation is
often called the distance modulus. The Sun has an apparent magnitude m = −27 and an absolute
magnitude M = +4.62.

1.3 Colour indices and surface temperature

Different stars have different colours, which depend on their temperatures; blue stars are hotter than
red stars. Thus, we are not only interested in the total amount of energy emitted by a star, but also
in how this energy is distributed as a function of wavelength. An indication of the distribution of
energy with wavelength can be obtained by observing the star through different coloured filters, and a
standard set of filters commonly used is the UBV system. It uses three filters, with sensitivity ranges:

Ultraviolet (U) 300 - 400 nm
Blue (B) 350 - 550 nm
Visual (V) 480 - 650 nm

In this system U , B and V are used to denote the apparent magnitudes measured with the corre-
sponding filters, although mU, mB and mV are also used. The absolute magnitudes in these colours
are denoted by MU, MB and MV, respectively. As with the apparent magnitudes discussed above, the
apparent magnitudes in U, B and V can be written as

U = −2.5log10(FU) +KU

where FU is the flux received in the U band and KU is a constant (similar expressions apply for B
and V ). To characterise the distribution of energy with wavelength, one introduces the colour indices
U −B and B − V , so that

U −B = 2.5log10(FB/FU) +KU −KB

and similarly for B−V . In the UBV system the constants are chosen such that U−B = B−V = 0 for
a particular type of star (the so-called A0 dwarf stars). For the Sun, the UBV apparent magnitudes
and colour indices are

U = -25.96
B = - 26.09 U - B = 0.13
V = -26.74 B - V = 0.65

In the absence of interstellar absorption, the colour indices are independent of the distance to the star,
and hence can be used to characterise its intrinsic properties.

The colour index is primarily determined by the surface temperature of a star. Hotter stars radiate
more of their energy at shorter wavelengths, hence their U magnitudes tend to be low relative to their
B magnitudes (remembering that magnitude decreases as luminosity increases) , and hence have a
lower U −B colour index than cooler stars. The same is true for the B − V index. To see why this is
true, consider the flux emitted from the surface of a black-body (as given by the Planck law)

Fλ =
2πhc2

λ5

1

exp
(
hc
λkT

)
− 1

. (4)
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Note that Fλ is the energy emitted per unit area per unit time per unit wavelength interval. The
quantity Fλdλ is equal to the energy emitted per unit area per unit time between wavelengths λ and
λ+ dλ. Differentiating eqn. (4) with respect to λ shows that the flux peaks at a value

λmax =
2.8978× 106

T

such that the peak of the stellar luminosity shifts to shorter wavelengths (measured in nanometres in
this expression where 1nm = 10−9 m) at higher temperatures. By integrating eqn. (4) over wavelength
one can show that the bolometric flux becomes

Fbol = σT 4.

Although stars are often reasonable approximations to black body emitters, their emission does deviate
from a perfect black body. If the stellar luminosity is denoted by L, then the effective temperature may
be defined through the expression

L = 4πR2σT 4
eff ,

where R is the radius of the star. i.e. The effective temperature is defined to be the temperature that
a star with bolometric luminosity L would have if it were a perfect black body.

Equation (4) can also be used to relate the colour indices to the stellar temperature. With known
spectral properties of the UBV filters, eqn. (4) allows theoretical values of the U − B and B − V
colour indices to be calculated for any assumed temperature. Matching the theoretical values with
the observed values allows one to determine the surface temperature of the star, the so-called colour
temperature. Given that stars do not radiate as perfect black bodies, in practice the actual temperature
and the effective and colour temperatures will all differ from each other.

1.4 Colour-magnitude diagrams

Given measurements of the brightnesses and surface temperatures of a group of stars,

Figure 3: Hertzsrpung-
Russell diagram.

as determined by their magnitudes and colour indices, one can plot these
against one another and look for correlations. This was first done by E.
Hertsprung and H.N. Russell, and these diagrams are commonly known as
Hertsprung-Russell diagrams. Figure 3 shows such a diagram for stars that
are close enough that their absolute magnitudes and luminosities could be
determined. Note also that the spectral classes of the stars, OBAFGKM,
corresponds closely to the effective temperature since the question of which
spectral lines are visible in a star’s spectrum is determined by its tem-
perature. It is obvious that stars are not randomly distributed in the
figure. The main sequence corresponds to the band running from bot-
tom right to top left, and this is where stars spend most of their lives
(cool, low luminosity stars at bottom right and hot, luminous stars at
top left). The red giant stars (large, luminous and cool stars) are lo-
cated at the top right. White dwarfs (hot, small, low luminosity stars) are located at bottom left.
Understanding the reasons why stars are distributed in this manner on a H-R diagram is a primary
goal of this lecture course.

Figure 4: Colour-
magnitude diagram.

Colour-magnitude diagrams are particularly useful for studying stellar
clusters, since the stars are all the same distance from Earth and have
the same age and initial metallicity. Figure 4 shows a colour-magnitude
diagram for a cluster where the apparent visual magnitude,V , is plotted
against B−V . The location where stars are turning off the main sequence
can be used to determine the age of the cluster since cooler stars live longer
than hotter stars in a predictable manner. Hence the value of the B − V
colour index corresponding to the turn-off tells us the age.
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2 Star formation

Stars form by the gravitational collapse of molecular cloud cores. For this
to occur gravitational forces must overwhelm pressure forces and other
sources of support such as magnetic fields, rotation and internal motions
such as may occur if the cloud is turbulent. In the following sections we
will consider the conditions required for gravitational collapse to occur and the time scale associated
with the collapse.

2.1 The fluid equations

We now introduce a set of partial differential equations that describe the evolution of a non-magnetised
gas under the influence of its own self-gravity and thermal pressure. These equations describe the stan-
dard laws of conservation of mass, momentum and energy. The symbols have the following meanings. ρ
is the density, P is the pressure, T is the temperature, v is the velocity, Φ is the gravitational potential,
U is the thermal energy per unit mass, F is the flux of heat due to radiation transport and ε is the
energy generation rate (important for stars that are heated by nuclear reactions).

The continuity equation describes the conservation of mass

∂ρ

∂t
+∇ · (ρv) = 0. (5)

The momentum equation describes the conservation of momentum

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P −∇Φ. (6)

The energy equation describes the evolution of the thermal energy per unit mass of the gas

∂U

∂t
+ (v · ∇)U = − P

ρ2
∇ · v + ε− 1

ρ
∇ · F (7)

The Poisson equation describes the relation between the gravitational potential and the internal density
which sources the self-gravity of the gas

∇2Φ = 4πGρ (8)

Finally, the equation of state relates the pressure to the density and temperature

P =
R
µ
ρT (9)

where R is the gas constant and µ is the mean molecular weight. Note that we can write R = kB/mH,
where kB is the Boltzmann constant and mH is the mass of the hydrogen atom.

2.2 The Jeans criterion for gravitational collapse

We will now use perturbation theory to determine the conditions under which a molecular cloud core,
supported against gravity by thermal pressure alone, will undergo gravitational collapse. We will use a
1-dimensional version of the equations of fluid dynamics described above to perform the analysis. The
continuity equation can thus be written

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (10)

and the momentum equation can be written

ρ

(
∂vx
∂t

+ vx
∂vx
∂x

)
= −∂P

∂x
− ρ∂Φ

∂x
. (11)
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We will assume that the gas in the molecular cloud is isothermal, being the same temperature at all
spatial locations and at all times during the evolution. This is a very good approximation for the
low density conditions in the interstellar medium. Compressional heating of the gas is accompanied
by efficient cooling (primarily through molecular line emission and through radiation by dust grains).
Cooling during expansion is compensated for by heating due to background starlight. The isothermal
approximation allows us to neglect the energy equation. The equation of state for an ideal gas is
normally written as

P =
R
µ
ρT. (12)

The sound speed in a gas is defined by

c2
s =

dP

dρ
(13)

and for an isothermal gas this may be written as

c2
iso =

R
µ
T (14)

so that the equation of state may be written in the simple form

P = c2
isoρ. (15)

Finally we have the 1-dimensional version of Poisson’s equation

∂2Φ

∂x2
= 4πGρ. (16)

We note that the gravitational acceleration, g, at any location inside the molecular cloud core is given
by

g = −∂Φ

∂x
.

We now consider the system to be in a state of dynamical equilibrium such that the gas is at
rest (i.e.vx = 0) and the pressure and gravitational forces are in balance. The density, pressure and
gravitational potential in the equilibrium state are denoted by ρ0, P0 and Φ0, respectively. For a general
body in equilibrium these quantities will not depend on time but will depend on spatial location. The
momentum equation (11) and Poisson equation (16) become

∂P0

∂x
= −ρ0

∂Φ0

∂x
∂2Φ0

∂x2
= 4πGρ0. (17)

We now suppose that the cloud undergoes small motions about the equilibrium state, such that small
perturbations develop in the velocity, pressure, density and gravitational potential

P = P0 + P1, ρ = ρ0 + ρ1 Φ = Φ0 + Φ1, (18)

so, for example, P1(x, t) ≡ P (x, t) − P0(x) is the difference between the actual pressure and its equi-
librium value at position x. We denote the velocity perturbation by vx, without a subscript since the
velocity is zero in the background equilibrium state. Substituting these expressions into eqns. (10),
(11) and (16) gives

(ρ0 + ρ1)

(
∂vx
∂t

+ vx
∂vx
∂x

)
= −∂(P0 + P1)

∂x
− (ρ0 + ρ1)

∂(Φ0 + Φ1)

∂x

∂(ρ0 + ρ1)

∂t
= −∂(ρ0 + ρ1)vx

∂x
∂2(Φ0 + Φ1)

∂x2
= 4πG(ρ0 + ρ1). (19)
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We assume that the perturbations (the quantities with subscript ‘1’ and the velocity vx) are small;
hence we neglect the products of two or more small quantities, since these will be even smaller. This
is known as linearising, because we only retain equilibrium terms and terms that are linear in small
quantities. This simplifies eqns. (19) to

ρ0
∂vx
∂t

= − ∂

∂x
(P0 + P1)− (ρ0 + ρ1)

∂Φ0

∂x
− ρ0

∂Φ1

∂x
∂ρ1

∂t
= − ∂

∂x
(ρ0vx)

∂2

∂x2
(Φ0 + Φ1) = 4πG(ρ0 + ρ1). (20)

Subtracting eqns. (17) from eqns. (20) leaves a set of equations which determines the evolution of the
perturbed quantities, and which are linear in those quantities

ρ0
∂vx
∂t

= −∂P1

∂x
− ρ1

∂Φ0

∂x
− ρ0

∂Φ1

∂x
∂ρ1

∂t
= − ∂

∂x
(ρ0vx)

∂2Φ1

∂x2
= 4πGρ1 (21)

We now consider the simplest possible system, which is a homogeneous cloud, infinite in all directions,
so that P0 and ρ0 are independent of position, as too is Φ0 by virtue of the equation of hydrostatic
equilibrium given by eqn. (17). Thus from eqn. (21) we have

ρ0
∂vx
∂t

= −∂P1

∂x
− ρ0

∂Φ1

∂x
. (22)

Taking the divergence of this equation, and using the last of eqns. (21) to eliminate ∂2Φ1/∂x
2, gives

ρ0
∂

∂t

(
∂vx
∂x

)
= −∂

2P1

∂x2
− 4πGρ0ρ1. (23)

We assume that the gas is isothermal so that P1 = c2
isoρ1. For a uniform medium, the second expression

in eqn. (21) becomes
∂ρ1

∂t
= −ρ0

∂vx
∂x

(24)

Using eqn. (24) and P1 = c2
isoρ1 to eliminate P1 and ∂vx/∂x from eqn. (23) we obtain

∂2ρ1

∂t2
= c2

iso

∂2ρ1

∂x2
+ 4πGρ0ρ1. (25)

This is a linear, second-oder PDE for ρ1 with coefficients that are independent of position and time.
Hence we seek plane-wave solutions of the form1 ρ1(x, t) = A exp (ikx+ iωt), where A is a constant
amplitude, k is the wavenumber of the disturbance (k = 2π/λ, where λ is the wavelength) and ω is
the wave frequency. In this case ∂ρ1/∂t = iωρ1 and ∂ρ1/∂x = ikρ1. Hence, eqn. (25) can be written

−ω2ρ1 = −k2c2
isoρ1 + 4πGρ0ρ1 (26)

For a non-trivial solution (i.e. ρ1 6= 0) we obtain the dispersion relation

ω2 = k2c2
iso − 4πGρ0. (27)

If k and ω are real then this represents an oscillation. If the right hand side is negative, however, as it
will be for sufficiently small k (equivalent to a sufficiently large wavelength for the disturbance), then
ω2 will be negative and ω will be imaginary. The values for ω may then be written

ω = ±
√
k2c2

iso − 4πGρ0 = ±
√
−1× (4πGρ− k2c2

iso) = ±i
√

4πGρ− k2c2
iso

1Note that here we are essentially expressing the function ρ1(x, t) as a Fourier series using complex exponentials
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Hence, the cloud will be unstable because there will be a solution ρ1 = A exp iωt exp ikx which grows
exponentially (and another solution which decays exponentially). Thus, the cloud is unstable to fluc-
tuations of wavenumber k if

k2c2
iso < 4πGρ0.

This can be rearranged to give

k−1 ≡ λJ

2π
>

√
c2

iso

4πGρ0
. (28)

Now a real cloud is of finite size, so one cannot have arbitrarily large wavelengths λ. If the cloud
is roughly spherical with radius R, we must have λ ≤ 2R. Such a cloud is unstable to density
perturbations if

R ≥ RJ ≡
1

2

√
πc2

iso

Gρ0
. (29)

If we consider the cloud to be spherical then it will collapse if its mass exceeds the critical Jeans mass

MJ =
4

3
πR3

Jρ0, (30)

which can be written as

MJ =
π

6

(
πRT0

µG

)3/2

ρ
−1/2
0 . (31)

Note that we can write the gas constant in terms of the Boltzmann constant, kB and the mass of the
hydrogen atom, mH

R =
kB

mH

giving

MJ =
π

6

(
πkBT0

µmHG

)3/2

ρ
−1/2
0 . (32)

We see that the Jeans mass is smaller for a higher density or lower temperature cloud.

2.3 A brief note on solutions to the wave equation and complex exponentials

Let us consider the equation for sound waves

∂2ρ1

∂t2
= c2

iso

∂2ρ1

∂x2
. (33)

The general solution to this equation can be written as a superposition of trigonometric functions of
the form

ρ1(x, t) = A cos (kx− ωt+ φ) (34)

where A is the amplitude, ω is the wave frequency, k is the wavenumber and φ is the phase. Now
consider the following identity

cos (X + Y ) = cosX cosY − sinX sinY.

If we let X = kx− ωt and Y = φ then we have

cos (kx− ωt+ φ) = cos (kx− ωt) cosφ− sin (kx− ωt) sinφ, (35)

from which we obtain

A cos (kx− ωt+ φ) = A cosφ cos (kx− ωt)−A sinφ sin (kx− ωt). (36)

Hence we can write

A cos (kx− ωt+ φ) = A′ cos (kx− ωt) +B′ sin (kx− ωt), (37)
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where A′ = A cosφ and B′ = −A sinφ. This latter form of the gneral solution may be one that you
are more familiar with, and all we have done here is demonstrate its equivalence to the general form
given by equation (34).

Now consider Euler’s formula
eiz = cos z + i sin z, (38)

where z is a real number and i =
√
−1, the imaginary unit. We can write

Aei(kx−ωt+φ) = Aeiφ ei(kx−ωt). (39)

Using Euler’s formula we obtain

Aei(kx−ωt+φ) = A(cosφ+ i sinφ)(cos [kx− ωt] + i sin [kx− ωt]). (40)

Expanding this expression and then collecting terms into real and imaginary parts, we obtain

Aei(kx−ωt+φ) = (A cosφ cos [kx− ωt]−A sinφ sin [kx− ωt])
+ i(A sinφ cos [kx− ωt] +A cosφ sin [kx− ωt]). (41)

We see that

Re
(
Aei(kx−ωt+φ)

)
= A cosφ cos [kx− ωt]−A sinφ sin [kx− ωt])

= A cos (kx− ωt+ φ), (42)

and hence the real part of the complex exponential form is equivalent to the original general solution
that we started with. This explains how the complex exponential notation used in obtaining the Jeans
mass relates to the plane-wave solutions used to obtain the dispersion relation.

2.4 Free fall time

In the previous section we have determined the conditions under which a pressure supported molecular
cloud core will become unstable and collapse under the influence of its own gravity. Now we will
determine the typical time scale for the collapse.

We consider a spherically symmetric, homogeneous cloud with mass M and initial radius R, and
assume that the cloud collapses in a state of free fall with the effects of pressure gradients being
negligible. This can be justified as follows. The gravitational acceleration is ≈ (GM)/R2 and the
acceleration due to the pressure gradient can be approximated as∣∣∣∣1ρ ∂P∂R

∣∣∣∣ ≈ P

ρR
≈ kT

µmHR
.

The ratio of the gravity to pressure terms is then ∝ M/(RT ), so that for an isothermal gas the
gravitational acceleration increasingly dominates over the pressure term as the collapse ensues and R
decreases.

The equation of motion for a thin, spherical shell of gas located at radius r from the centre of the
cloud undergoing free fall is

d2r

dt2
= −Gm

r2
(43)

where m denotes the mass contained interior to radius r. We can write the velocity of the shell

v(r(t)) =
dr

dt

and we can rewrite the left-hand side of the equation of motion as

d2r

dt2
=

d

dt

(
dr

dt

)
=

d

dt
(v(r))) =

dv

dr

dr

dt
= v

dv

dr
=

1

2

d

dr
v2. (44)
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The equation of motion then becomes
1

2

d

dr
v2 = −Gm

r2
. (45)

Integrating this equation for a shell of gas that sits at the cloud surface gives∫
1

2
d(v2) = −

∫ r

R

Gm

r2
dr (46)

hence
v2(r) = 2GM

(
1

r
− 1

R

)
(47)

where the initial conditions are v(R) = 0 since the cloud starts at rest and so the velocity of the shell
located at the surface of the cloud is zero. Note that we have set m = M , where M is the total mass
of the cloud initially contained within radius R, since the mass interior to the shell does not change as
the collapse ensues. Using v = dr/dt, eqn (47) can be written

dr

dt
= ±

[
2GM

(
1

r
− 1

R

)]1/2

(48)

Choosing the solution with dr/dt < 0 gives an expression from which the time taken for collapse can
be determined ∫ τff

0
dt = −

∫ 0

R

dr[
2GM

(
1
r −

1
R

)]1/2 = −
∫ 0

R

dr(
2GM
R

)1/2 (R
r − 1

)1/2 . (49)

Using the substitution

ζ =
r

R
, dζ =

dr

R

we obtain ∫ τff

0
dt = −

(
2GM

R3

)−1/2 ∫ 0

1

(
ζ

1− ζ

)1/2

dζ. (50)

Noting that M/R3 = 4πρ0/3, where ρ0 is the initial cloud density, this expression becomes∫ τff

0
dt = −

(
8πGρ0

3

)−1/2 ∫ 0

1

(
ζ

1− ζ

)1/2

dζ. (51)

The integral on the right-hand side can be solved analytically using the substitution ζ = sin2 φ, giving

τff =

√
3π

32Gρ
. (52)
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