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The Greatest Hits of the 2000s

[10 Points]
We are supplied with the relation 1/r = L cosϕ satisfied by a null geodesic xa(λ) = (t(λ), r(λ), π/2, ϕ(λ))
with null tangent vector ~u 7→ ua ≡ dxa/dλ whose norm squared is 0 along the entire geodesic
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We also know that this is a geodesic with respect to the Schwarzschild metric gab, which is a metric that
is independent of both t and ϕ i.e. ∂tgab = 0 and ∂ϕgab = 0, so we know that there are two constants E
and L along the geodesic
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The relation ϕ = ϕ(r) is supplied by the relation 1/r = L cosϕ, so that ϕ(r) = arccos
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We can now complete our expression for dt/dr
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Integrating this for the t interval from the point of closest approach r = 1/L to r = R, and doubling the
result to get the entire t interval from r = R to r = 1/L to r = R, we obtain the desired result
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The Greatest Hits of the 2010s

a) [4 Points]
We are given two points p and q that are simultaneous ∆t = 0 and separated by spatial distance ∆x = X
in a frame F : (t, x), and has a nonzero time interval ∆t′ = T and separated by some unknown spatial
distance ∆x′ in frame F ′ : (t′, x′).
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b) [3 Points]
The spatial distance ∆x′ can be found by writing down the spacetime interval between points p and q
both coordinate systems and equating these expressions with each other

−∆t2 + ∆x2 = −∆t′2 + ∆x′2, (6)

so we conclude that ∆x′ =
√

∆x2 + ∆t′2 =
√
X2 + T 2.

c) [3 Points]
The velocity v between frames F : (t, x) and F ′ : (t′, x′) can be determined by writing down the coordi-
nates of point q in both frames and relating them by Lorentz transformation. To simplify this, let us take
the point p to be at the origin. Then, the point q has coordinates t = 0, x = X or t′ = T, x′ =

√
X2 + T 2.
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The Lorentz transformations at point q relates these coordinates i.e. given frame F ′ : (t′, x′) moving with
velocity β = v/c with respect to F : (t, x), we have

t = γt′ + γβx′,

x = γβt′ + γx′,

where γ = 1/
√

1− β2. Using the coordinates for point q, the first line tells us that 0 = γT+γβ
√
X2 + T 2,

and thus we conclude that v = −cT/
√
X2 + T 2.

Gravitational Waves and Circular Rings

a) [8 Points]
Given a gravitational wave metric in coordinates xa = (t, x, y, z), with components

gab =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 cos(ωt− kz),

we will now compute four different arc lengths.
The “vertical line” from the point labelled by x = 0, y = −d/2 and the point labelled by x = 0, y = d/2
which can be described by the curve x(y) = 0, y(y) = y when parametrized by λ = y, has arc length
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The “horizontal line” from the point labelled by x = −d/2, y = 0 and the point labelled by x = d/2, y = 0
which can be described by x(x) = x, y(x) = 0 when parametrized by λ = x, has arc length
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b) [2 Points]
The effect of the gravitational wave on the circular ring is to alternately stretch and squeeze it along the
x and y axes with amplitude h+, and along the diagonal axes offset by π/4 from the x and y axes with
amplitude h×.
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