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Question 1. [15 marks] Let A, B denote two arbitrary 4-vectors in Minkowski
space-time.

(a) Define the scalar product A · B. [3]

(b) State the definition for the invariance of A · B. [2]

(c) Show that if |A|2, |B|2 and |A + B|2 are invariant, then A · B is invariant. [3]

(d) Define spacelike, timelike and null vectors in Minkowski space. [4]

(e) Show that the sum of any two orthogonal spacelike vectors is also spacelike. [3]

Question 2. [16 marks]

(a) Let φ be a scalar and let Va =
∂φ
∂xa = ∂aφ. Show that Va is tensorial. [6]

(b) Consider R3 with spherical co-ordinates (r, θ, ϕ) and line element given by

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2.

(i) Given the contravariant vector Xa = (1, r, r2), find Xa. [5]

(ii) Given the covariant vector Ya = (0,−r2, r2 cos2 θ), find Ya. [5]

Question 3. [16 marks] Let F and F′ denote two inertial reference frames moving
with velocity v with respect to each other.

(a) Given the Lorentz transformations in the appendix, compute the inverse
Lorentz transformations. [4]

(b) Let ∆ = −c2t2 + x2 + y2 + z2. Show that ∆ is invariant under Lorentz
transformations. [4]

(c) Consider a particle moving along the x-axis. Its velocity in the x direction with
respect to the frames F and F′ are given, respectively, by

V =
dx
dt

and V′ =
dx′

dt′
.

(i) Using the Lorentz transformation between F and F′ show that

V′ =
V − v

1−Vv/c2 .

[6]

(ii) State a formula for V in terms of V′. [2]
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Question 4. [18 marks] Consider a space-time with metric

ds2 = −e2Ardt2 + dr2.

(a) Write down the tensors gab and gab corresponding to this metric. [4]

(b) Compute the Lagrangian, L, of this metric. [4]

(c) Compute the Christoffel symbols and geodesic equations for this metric. [10]

Question 5. [15 marks]

(a) State the definition of the momentum 4-vector and the law of conservation of
momentum. [5]

(b) In this question, assume that we are using units for which c = 1. A particle has
rest mass m0. While at rest, it emits a photon and its rest mass is reduced to
m0/2.

(i) Show that the speed of the particle after the reduction of mass is 3/5. [8]

(ii) Compute the value of the energy of the photon, E = hν, in terms of m0. [2]

Question 6. [20 marks] Consider the Schwarzschild metric, given in local
co-ordinates (t, r, θ, ϕ) by

ds2 = −
(

1− 2GM
r

)
dt2 +

1(
1− 2GM

r

)dr2 + r2(dθ2 + sin2 θdϕ2). (1)

(a) If A = 1− 2GM
r and A′ = 2GM

r2 derive the geodesic equations for the metric in
the form above (1) in terms of A, A′. [8]

(b) Describe which metric this is when M = 0. [2]

(c) Find the values of r for which this metric is singular. [4]

(d) Consider the following new co-ordinate system

t̂ = t + 2GM ln |r− 2GM|, r = r, θ = θ, ϕ = ϕ.

Compute the line element in these co-ordinates. [6]

End of Paper – An appendix of 1 page follows.
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• Lower case Latin indices run from 0 to 3

• The metric tensor of Minkowski space-time is ηab where

ds2 = ηabdxadxb = −c2dt2 + dx2 + dy2 + dz2

• The Lorentz transformations between two frames F and F′ in standard
configuration are given by

x′ = γ(x− vt), t′ = γ
(

t− vx
c2

)
, y′ = y, z′ = z, with γ =

1√
1− (v2/c2)

where F′ is moving with speed v relative to F.

• A covariant vector is tensorial if

V′a =
∂xb

∂x′a
Vb

and a contravariant vector is tensorial if

V′a =
∂x′a

∂xb Vb

• The covariant derivative of a covariant vector is given by

∇aVb = ∂aVb − Γc
abVc.

• The covariant derivative of a contravariant vector is given by

∇aVb = ∂aVb + Γb
acV

c.

• The metric tensor satisfies

gabgbc = δc
a.

• The Christoffel symbols (connection):

Γc
ab =

1
2

gcd(∂agbd + ∂bgda − ∂dgab)

• The Riemann curvature tensor :

Ra
bcd = ∂cΓa

bd − ∂dΓa
bc + Γa

ecΓe
bd − Γa

edΓe
bc

• Euler-Lagrange Equations:

d
dλ

(
∂L
∂ẋc

)
− ∂L

∂xc = 0.

• Geodesic equations:

ẍa + Γa
bc ẋb ẋc = 0.

End of Appendix.
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