Physical Cosmology Exercises

Phil Bull, September 23, 2019

Week	Title	Release date	Hand-in date	Marks returned
1	Expanding universe	Tue 24 Sep	Not assessed	Not assessed
2	Geometry and distance	Tue 01 Oct	Wed 09 Oct	Tue 15 Oct
3	Friedmann equation	Tue 08 Oct	Wed 16 Oct	Tue 22 Oct
4	Acceleration and the cosmic horizon	Tue 15 Oct	Wed 23 Oct	Tue 29 Oct
5	Thermal history of the Universe	Tue 22 Oct	Not assessed	Not assessed
6	Cosmic Microwave Background	Tue 29 Oct	Wed 13 Nov	Tue 19 Nov
7	READING WEEK	n/a	n/a	n/a
8	Inflation	Tue 12 Nov	Wed 20 Nov	Tue 26 Nov
9	Dark matter	Tue 19 Nov	Wed 27 Nov	Tue 03 Dec
10	Structure formation	Tue 26 Nov	Wed 04 Dec	Tue 10 Dec
11	Observational cosmology	Tue 03 Dec	Not assessed	Not assessed
12	REVISION	Tue 10 Dec	Not assessed	Not assessed

Exam question pro-tips*

- Show your working;
- Make it clear what your final answer is (e.g. underline it);
- Write neatly and legibly;
- Diagrams/sketches should be neat and properly labelled, but don't need to be super precise (no need for a ruler);
- Don't forget units;
- Use maths symbols (e.g. equals sign, integrals) properly;
- Cross-out wrong answers simply but clearly;
- If a question asks you to explain or discuss something, write a few concise sentences (not just a handful of words, and not a long essay!);
- Read the instructions fully and carefully before you start writing!

(*Based on some common reasons for losing marks in last year's exam.)

Week 1: Expanding universe

This sheet doesn't need to be handed in for marking, but please bring it (with completed answers!) to next week's tutorial so we can go over the answers.

1. Maths practice: Unit conversions

- (a) What is the frequency, in GHz, of electromagnetic radiation with a wavelength of 21cm?
- (b) A typical cluster of galaxies has a mass of around $10^{14} M_{\odot}$. What is this in kg?
- (c) What is 6 arcsec. in degrees? How many radians are in a degree?
- (d) Consider a neutrino of energy 0.06 eV in its rest frame. What is its mass in kg?

2. History of the Universe

- (a) Give a one-sentence description of what happened during each of the following epochs:(i) Inflation; (ii) Structure formation; (iii) Cosmic Dawn.
- (b) Put the following events in chronological order (from earliest to most recent): First neutral atoms formed — Extinction of the dinosaurs — Universe became transparent to light — Stoke City won the League Cup — Inflation — Formation of first stars and galaxies — First nuclei formed — Large-scale structure formed.

3. Spectroscopy

An emission line is detected at a wavelength of 406.01 nm in a galaxy with a recession velocity of 13,191 km/s.

- (a) What is the redshift of the galaxy?
- (b) A second galaxy of the same type is found at a redshift z = 0.34. What wavelength will this emission line be observed at for this galaxy?

4. Olbers' paradox

Imagine that a static, infinitely-large, infinitely old Universe is uniformly filled with stars, with a density n. Assume that each star has the same luminosity, L, and stellar radius, R.

- (a) Calculate the total solid angle subtended by all the stars in a thin spherical shell of width dr at a distance r from Earth.
- (b) Write an expression for the total flux received from each shell.
- (c) Assume that the stars are opaque, so no light can pass through them. Under this assumption, what is the brightness of the night sky?

Practice exam question: Expansion and redshift

- (a) What redshift corresponds to when the Universe was (i) half its current size; (ii) a tenth its current size?[5 marks]
- (b) The Lyman-α (n = 2 → 1) emission line of hydrogen is emitted at a wavelength of 121.6 nm in the rest frame. Galaxies A and B are observed with Lyman-α emission lines at frequencies of 0.99 × 10¹⁵ Hz and 1.90 × 10¹⁵ Hz respectively. (i) What is the redshift of each galaxy? (ii) Which galaxy is further from us? [10 marks]
- (c) By drawing a diagram, explain Olbers' Paradox. How does the observation that the Universe is expanding solve the paradox? Name one other possible solution and explain why it does not work. [10 marks]
- (d) Explain two pieces of evidence for the hot Big Bang model. You should discuss (i) how the observations were made; (ii) how they imply that there was a Big Bang; (iii) how they imply that it was hot; and (iv) whether they can also be used as evidence to support the Steady-State theory or not (explain why). [15 marks]