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You may assume the following:
In all questions: M is the mass, m(r) the mass interior to radius r, R is the radius, L the lu-
minosity and Teff the effective temperature of a star. P , ρ and T denote the pressure, density
and temperature respectively. κ is the opacity per unit mass, ϵ the rate of energy production per
unit mass and µ denotes the mean molecular weight. cp, cv are the specific heats at constant
pressure and volume, γ = cp/cv and R is the gas constant where R = µ(cp − cv).
L = 4πR2FRad and FRad is given by

FRad = −4ac

3

T 3

κρ

dT

dr
.

c, G, σ = ac/4 are respectively the velocity of light, the constant of gravity and the Stefan-
Boltzmann radiation constant. X,Y, Z are the mass fractions respectively of hydrogen, helium
and the heavier elements.
The central density ρc, central temperature Tc and central pressure Pc of a polytrope of index n
are

ρc = an
3M

4πR3
, Tc = bn

µGM

RR
, Pc = cn

GM2

R4
.

The apparent magnitude mapp, absolute magnitude Mabs and distance in parsecs d are related
by mapp = Mabs + 5logd − 5. The following rounded numerical values, all in S.I. Units may be
assumed throughout the paper.

c = 3× 108, G = 7× 10−11, σ = 6× 10−8,M⊙ = 2× 1030, R⊙ = 7× 108, L⊙ = 4× 1026.

You may also assume that 1 year is 3× 107seconds.
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SECTION A Answer ALL questions in Section A

Question A1

A star S has a measured parallax of 0.13 arcsec, and an apparent magnitude of 0.03. Spectro-
scopic measurements show that the effective temperature of S is two times larger than that of
the Sun.

a ) What is the visible colour of the star S: is it redder or bluer than the Sun?

b ) What is the distance to the star S (in parsecs)? What is its absolute magnitude?

c ) The Sun has an absolute magnitude of 4.62. What is the apparent magnitude of a star
identical to the Sun, when it is placed at the same distance as S?

[8 marks]

Question A2

a ) Show that for a fully ionized gas consisting of atomic hydrogen and helium only, the mean
molecular weight µ is given by

µ =
4

8− 5Y
.

b ) For a particular homogeneous star, Y = 0.25 while for a second homogeneous star that is
more evolved, Y has increased to 0.35. Both stars have the same polytropic index . The
central temperature is the same in both stars and may be assumed to be as given in the
rubric. If the second star has twice the mass of the first star, calculate the ratio of their radii.

[9 marks]

Turn over
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Question A3

The Lane-Emden equation is
1

ξ2
d

dξ

(
ξ2
dθ

dξ

)
= −θn,

where constant n is the polytropic index. In polytropic stars, the radial profiles of density and
pressure are governed by the solution of the Lane-Emden equation θ(ξ) as

ρ(r) = ρcθ
n(ξ), P (r) = Pcθ

n+1(ξ),

where ρc and Pc are central values of density and pressure, and r = αξ with some constant α.
Consider a polytropic star with n = 1.

a ) Show by direct substitution that the solution to the Lane-Emden equation is

θ(ξ) =
sin ξ

ξ
.

b ) Deduce the value of ξ at the surface of the star.

c ) Find the density (in terms of the central density) and temperature (in terms of the central
temperature) at a distance from the centre of 1/3 of the radius. You may assume that the
equation of state is that of an ideal gas, and that the mean molecular weight is uniform
throughout the star.

[8 marks]

Question A4

You are given that the gravitational binding energy Ω of a star of polytropic index n is

Ω = − 3GM2

(5− n)R
,

and it is related to the internal energy U by the virial theorem

2U + Ω = 0.

a ) Consider a star with a polytropic index n = 3 and no nuclear energy sources. The opacity
is assumed to be of the Kramers type so that L ∝ M5.5R−0.5. Show that such a star will
evolve along a line in the HR diagram with a slope of 0.8.

b ) Show that t, the time taken by such a star to evolve from a very large radius to some smaller
radius R0, is given by

t ∝ M−3.5R−0.5
0 .

[9 marks]
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Question A5

Consider a group of homogeneous stars. Each star in the group has the same chemical compo-
sition, is homogeneous, and is composed of an ideal gas. Energy generation is by the p-p chain,
with ϵ = ϵ0ρT

4. All the energy is carried by radiation and the opacity is given by κ = κ0ρT
−3.5.

a ) Show that
M ∝ R13.

b ) Also show that
L ∝ M71/13.

c ) Obtain the slope of the line in an H-R diagram (logL versus log Teff) that these stars lie on.

[9 marks]

Question A6

In the stellar core where pressure P is dominated by the pressure of the degenerate relativistic
electrons, the pressure and density are related by a polytropic law

P = Kρ
4
3 ,

where K is some constant.

a ) Show that there is only one possible mass for a stellar core where pressure is dominated
by the pressure of the degenerate relativistic electrons.

b ) Show that when the pressure and the internal energy in the stellar core are dominated by
those of the degenerate relativistic electrons,

U + Ω = 0,

where U is thermal energy, and Ω is gravitational binding energy of the core. Discuss briefly
the physical meaning of this result. You may assume without proof that the internal energy
density u is u = 3P , and

Ω = −3
∫
V

P dv,

where V is the spherical volume occupied by the core.

[7 marks]

Turn over
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SECTION B Answer TWO questions from Section B

Question B1

a ) By considering the forces acting on a volume element, show that for a spherically symmetric
star to be in hydrostatic equilibrium:

dP

dr
= −Gm(r)ρ

r2
.

[6 marks]

b ) Consider a hypothetical star of mass M and radius R, with uniform density distribution
(ρ=const). Find the expressions for m(r) and P (r).

[6 marks]

c ) Material in the star satisfies the ideal-gas equation of state P = R
µ
ρT . Deduce whether the

star is convectively stable or unstable.

[3 marks]

d ) Obtain an expression for the gravitational binding energy Ω of the star in terms of M and
R.

[5 marks]

e ) For an ideal gas of classical particles, the internal energy density u is u = 3
2
P (you can use

this relation without a proof). Obtain an expression for the total internal energy U of the star
in terms of M and R. Verify that Ω = −2U .

[5 marks]

Question B2

a ) The interaction of photons with atoms is described in terms of a cross section σR, which is
defined such that

nλphσR = 1,

where n is the number of atoms per unit volume, and λph is the mean free path of a photon.
Using geometrical arguments, explain the origin of this definition.

[3 marks]

b ) The opacity κ is defined as

κ =
1

ρλph
.

Show that κ is the total cross section per unit mass.
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[3 marks]

c ) The optical depth, τ , in a stellar atmosphere is defined as

τ =

∞∫
r

κρ dr.

Starting from the equation for radiative flux, F , given in the rubric, show that in the atmo-
sphere of a star

T 4 =
3F

ac
(τ +B) ,

where B is a constant of integration, which you may assume without proof to be B = 2/3.
Using F = σT 4

eff as a definition of the effective temperature Teff , show that

T 4 =
3

4
T 4
eff

(
τ +

2

3

)
.

[8 marks]

d ) Assume now that this T − τ relation is valid everywhere in the radiative atmosphere, in-
cluding optically thin layers. Explain the possible weaknesses of this assumption. Assume
further that the atmosphere is an ideal gas and in hydrostatic equilibrium and that the mass
and thickness of the atmosphere are both negligible compared to the mass and radius of
the star. Given that P = 0 at τ = 0 and that the opacity is given by κ = κ0ρT

5 with some
constant κ0, show that

P 2 = P 2
0 ln

(
1 +

3

2
τ
)
,

where P0 is another constant which you do not need to specify.

[11 marks]

Question B3

a ) The adiabatic exponent γ is defined as

γ =

(
∂ lnP

∂ ln ρ

)
S

,

where subscript S indicates that the partial derivative is taken at constant entropy, i.e.
without any heat exchange. Assuming that the equation of state is that of an ideal gas,
P = R

µ
ρT , show that (

∂ lnT

∂ lnP

)
S

=
γ − 1

γ
.

[3 marks]

Turn over
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b ) Derive the Schwarzschild condition for the onset of convection in an ideal gas, namely

d lnT

d lnP
>

γ − 1

γ
.

[11 marks]

c ) Assume that the temperature- and pressure profiles in the radiative stellar atmosphere are
given by the relations

T 4 =
3

4
T 4
eff

(
τ +

2

3

)
,

P 2 = P 2
0 ln

(
1 +

3

2
τ
)
,

where τ is an optical depth, and P0 is some constant. Assume further that γ = 5/3. Show
that the convection sets in at a level where

τ =
2

3

[
exp

(
4

5

)
− 1

]
.

[11 marks]

Question B4

According to Pauli’s exclusion principle, at most two electrons can occupy a given energy state,
and each particular energy state occupies volume h3 in the 6-dimensional space of coordinates
and momenta, where h is the Planck constant.

a ) In a degenerate gas all the electron states are filled up to a threshold momentum pF and
none above. Show that the number density of electrons for which momentum p is in the
interval (p, p+ dp) is

ne(p) dp =
8πp2

h3
dp

when p ≤ pF . Show that the total (i.e., integrated over all the possible momenta) electron
number density is

ne =
8π

3h3
p3F .

[7 marks]

b ) Show that when the electrons are moving with speeds small compared to the speed of
light, the energy density of the degenerate electrons is

ue =
4π

5h3me

p5F ,
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and the pressure of the degenerate electrons is

Pe =
8π

15h3me

p5F .

You may use the general expression E = 1
2
p2

m
for the energy E of a single particle with

momentum p and mass m, and the general relation P = 2
3
u between pressure P and

energy density u in a gas composed of classical particles.

[7 marks]

c ) Show that in a completely ionized gas, the electron number density, ne, is approximately

ne ≃
ρ(1 +X)

2mH
,

where X is mass fraction of hydrogen, and mH is the mass of the hydrogen atom.

[4 marks]

d ) Show that the analysis of part (b) of this question, which neglects the relativistic effects, is
only applicable when

ρ ≪ mH

(
mec

h

)3

,

where c is speed of light.

[7 marks]

End of Paper


